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ABSTRACT

Infrastructure-as-code (IaC) is reshaping how cloud resources are
managed. IaC users write high-level programs to define their de-
sired infrastructure, and the underlying IaC platforms automati-
cally deploy the constituent resources into the cloud. While proven
powerful at creating greenfield deployments (i.e., new cloud de-
ployments from scratch), existing IaC platforms provide limited
support for managing brownfield infrastructure (i.e., transplanting
an existing, non-IaC deployment to an IaC platform). This hampers
the migration from legacy cloud management approaches to an IaC
workflow and hinders wider IaC adoption. Managing brownfield
deployments requires techniques to lift low-level cloud resource
states and translate them into corresponding IaC programs—the re-
versal of the regular deployment process. Existing tools rely heavily
on rule-based reverse engineering, which suffers from the lack of
automation, limited resource coverage, and prevalence of errors. In
this work, we lay out a vision for Lilac, a new approach that frees
IaC lifting from extensive manual engineering. Lilac brings the
best of both worlds: leveraging Large Language Models to automate
lifting rule extraction, coupled with symbolic methods to control
the cloud environment and provide correctness assurance. We en-
vision that Lilac would enable the construction of an automated
and provider-agnostic lifting tool with high coverage and accuracy.

1 INTRODUCTION

Cloud computing has become an essential utility across indus-
tries [1].Modern cloud infrastructure offers various types of services—
e.g., virtualmachines, virtual networks, load balancers, DNS services—
which further vary across cloud providers (e.g., AWS vs. Azure vs.
GCP). To manage cloud resources, recent management platforms
(e.g., Terraform [12]) follow the Infrastructure-as-Code (IaC) design
philosophy [18], aiming to replace traditional “ClickOps” and cloud-
level API scripting [30]. IaC platforms allow users to define their
cloud infrastructure through high-level programming abstractions,
masking away complexities of the deployment process [32]. They
also aspire to be cloud-agnostic—i.e., capable of managing resources
in any cloud provider; this is crucial, as many enterprises adopt
the multi-cloud strategy to avoid vendor lock in [36]. Terraform is
the leading cloud-agnostic IaC platform; at the same time, many
other similar solutions exist [2, 4, 9, 10], with different tradeoffs on
programming styles and vendor specificity.

While IaC frameworks make it easy to create new infrastructures
from scratch, they lack support for porting an existing, non-IaC
infrastructure into an IaC program. This need arises in several
scenarios. First, many existing infrastructures are constructed us-
ing traditional approaches like API scripting, but their DevOps
engineers wish to transition them to IaC platforms and modern-
ize their management. Alternatively, some DevOps engineers may
prefer using API scripts to construct the infrastructure; but they
want to periodically port out an IaC program that describes the
underlying resources, which can be scrutinized using compliance
checkers for high assurance [6]. Finally, the DevOps team may con-
sist of engineers with different coding preferences, so the overall

/* cloud state */
{ // Azure Virtual Machine
 “id”:"/<subscription>/…/VM/test",
 “osType”:“Linux”
},
{ // Azure Disk (OS disk)
 “id”:"/<subscription>/…/disk/OS"
 “manageBy”:“.../VM/test”
},{ // Azure Disk (data disk)
 “id”:"/<subscription>/…/disk/data"
 “manageBy”:“.../VM/test”
}

/* IaC resource blocks */
resource “azure_linux_VM”“test”{
  storage_os_disk {...}
  os_profile_linux_config {...}
  ... ...
}
resource “azure_disk”“data”{...}
resource “azure_VM_data_disk_
attachment” “vm-disk” {
  disk_id = azure_disk.data.id
  vm_id = azure_linux_VM.test.id
}

Figure 1: Example Cloud State and IaC Program

infrastructure contains components created in IaC and non-IaC
approaches. Across these scenarios, the key underlying problem is
the same: Given low-level cloud states from an existing deployment,
we need to derive an equivalent, higher-level IaC program that codifies
the infrastructure. This is the reversal of the regular deployment
path, for which IaC platforms are not explicitly designed. Hence,
this is a challenging process, and in this paper, we call it IaC lifting.

To understand the complexity of IaC lifting, consider Figure 1
that shows an Azure VM and its attached data and OS disks. In
order to lift the cloud-level state (left) into an IaC program (right),
the lifting tool must first discover that these resources exist and
comprise the totality of the deployment. Next, it needs to reason
about resource-level dependencies, recognizing that the VM and
disks are attached to each other: while the OS disk should be nested
in VM, data disk is managed via “attachment”. Finally, it needs to
correctly identify all resource attributes, e.g., porting a VM as a
Linux or Window resource block in the IaC program. Correctness
further requires syntactic checking of the lifted IaC program, as
well as checks that ensure its equivalence in terms of resource- and
dependency-level state to the existing cloud deployment. This is a
delicate procedure, and any slightest mistakes could result in missed
resources, undeployable programs, or inequivalent infrastructures.

Industry practitioners have widely recognized the need for IaC
lifting, but existing tools [3, 5, 7, 11, 13, 14] struggle with this task.
These tools are built upon manually crafted heuristics specialized
to a limited set of resource types in specific cloud providers. Lift-
ing is performed using hardcoded rules for discovering resources,
reverse-engineering their dependencies, and extracting attribute
values from cloud states. Developing such tools requires exten-
sive efforts, since the trial-and-error process involves hand-tuning,
manual testing, and often, some amount of guesswork. Maintain-
ing these tools incurs additional burden, since supporting new
resources or providers requires further manual engineering. As a
result, today’s tools are brittle and do not offer any correctness
assurance, which means the lifted programs might contain a vari-
ety of errors. While devoting more engineering hours could lead
to improvements, scaling the current practice to multiple cloud
providers is inherently challenging. This chips away at the ideal of
IaC-style management.

Lilac aims to remove the extensive, error-prone manual engi-
neering in current IaC lifting practices. Our vision is to automati-
cally perform cloud-agnostic IaC lifting with both high coverage
and accuracy, with the help of LLM agents. The key insight is
that, IaC lifting rules (the reverse direction) can be learned from ob-
serving IaC program deployments (the forward direction). Since IaC
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Figure 2: Typical IaC Lifting Workflow

frameworks are well-engineered for translating IaC programs to
cloud-level resource states, AI-powered intelligence could closely
observe this workflow and infer the backward mapping from cloud
states to IaC programs. We envision a self-evolving agent that takes
available IaC programs as inputs, deploys them into the cloud to
obtain resource states, and then rolls out a sequence of experiments
to find, port, and translate resource states back to the original IaC
programs. This approach offers the following benefits: (1) if a re-
source type is witnessed in the input IaC corpus, the agent will
learn how to lift it; (2) lifting rules can be verified by comparing
lifted IaC programs with the original input programs; (3) lifting
rules for each resource type can be progressively improved as we
acquire more input programs for training the agent. Above all, this
is an automated process, and one that can be applied across cloud
providers, without repeated development burden for each cloud.

Lilac uses a neurosymbolic approach to IaC lifting, combining
the power of LLM agents for knowledge retrieval (e.g., from on-
line cloud documentation) and symbolic methods for reliability
guardrails (e.g., for distilling lifting rules). Although LLMs have
remarkable performance, IaC lifting requires high precision and
reliability. LLM can hallucinate, especially in complex tasks that
require domain-specific knowledge and interaction with external
tooling. Their inference results may not be consistent across ses-
sions, with low reproducibility. Cloud operations, on the other hand,
are safety-critical and cannot tolerate imprecision or errors. We
design an LLM agent capable of dividing lifting rule extraction
into simpler subtasks, each verifiable via complementary symbolic
mechanisms. This combination will help Lilac achieve automation
with assurance of the quality of generated results.

Lilac is still an ongoing work; but as initial evidence on the
effectiveness of our proposed approach, we have built a research
prototype capable of extracting several types of important IaC lift-
ing rules, performing on par with or exceeding today’s hand-crafted
tools. First, we show that LLM agents can be used for a variety of
rule extraction tasks, including cloud resource discovery and re-
source mapping generation. Moreover, we explore the usage of
deployment-based testing (e.g., comparing lifted programs against
initial programs) for validating the learned rules. Last but not least,
we show the learned rules can be used to lift real-world cloud in-
frastructure. We also propose a roadmap towards an end-to-end,
industry-strength pipeline for IaC lifting across cloud providers,
which could deal with more fined-grained rules and ensure correct-
ness of lifted programs for Azure, GCP, AWS, and other clouds.

2 MOTIVATION

In this section, we further motivate our problem by delving into its
use cases, requirements, and solution space.

Tools Azure Google AWS Coverage

TerraCognita [11] Ë Ë Ë ~10%
Terraformer [14] Ë Ë Ë ~10%
aztfexport [5] Ë é é ~95%
gcloud export [7] é Ë é ~30%
aws2tf [3] é é Ë ~60%

Table 1: Scope and Coverage
1
of Existing IaC Lifting Tools

2.1 Lifting: The Road Less Traveled

Infrastructure-as-Code (IaC) tools such as Terraform [12] simplify
cloud management tasks by providing an abstraction layer that
hides away cloud operation details. Terraform compiles a user-
specified IaC program and compares it with “local states,” which
are initially empty, to generate a provider-agnostic deployment
plan. It then invokes provider-specific plugins based on the plan,
issuing a sequence of API calls to deploy the constituent cloud
resources. As the last step, Terraform updates the local states with
the deployed cloud states to be in sync. This “forward” workflow,
from user programs to cloud states, is what IaC tools are built for.

The backward path for lifting “in the wild” cloud states—i.e., an
infrastructure that is not constructed using IaC tools—back to local
states and IaC programs, is less studied. Figure 2 depicts the lifting
workflow: (1) obtaining cloud states from the provider backend, (2)
mapping cloud states back to local states, and (3) translating local
states into IaC programs. Our survey with IaC users and developers
indicates that a lifting workflow should offer the following features,
none of which are fully covered by existing tools:

(1) Resource coverage: the IaC lifting process should be able to
handle all constituent cloud resources, across cloud providers,
without any missed resources or dependencies.

(2) Correctness: the lifted program should compile correctly;
when deployed to the cloud, it should produce the same
cloud states as those of the brownfield deployment. A cor-
rect program should be able to pass through multiple IaC-
native verifications (§3.2.2).

2.2 Existing IaC Lifting Tools

Historically, IaC platform developers have attempted to add official
support for lifting, with Terraform import [13] being the most
notable efforts. Essentially, Terraform import partially automates
step (2) and (3) in Figure 2 by translating local states to IaC resource
blocks. However, to maintain the provider agnostic interface, it
asks users to obtain cloud states from providers, identify the type
mapping between cloud states and local states, then fix a wide
range of errors caused by the plain porting from local states to IaC
resource blocks. Since IaC platforms struggle to offer automated
lifting support, many third-party tools have been developed on
top of them to improve the status quo. As highlighted in Table 1,
existing lifting tools fall into two categories.

(1) Cloud-agnostic lifting tools like TerraCognita support mul-
tiple major cloud providers, but suffer from low resource
coverage within each cloud, which means they will simply
ignore all resources except the most popular ones.

1Coverage is calculated as # Supported Terraform resource types by the tools / # Total
Terraform resource types in the cloud providers.
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(2) Cloud-specific lifting tools like Azure’s aztfexport achieve
higher coverage as they have tighter coupling with cloud
providers. Nevertheless, such lifting tools are inherently
limited in their scopes, as their implementation cannot
easily generalize to other providers.

2.3 Key Idea and Challenges

Throughout this paper, we discuss how to learn IaC lifting rules
by observing the IaC deployment process. Our key idea is that,
given both the original IaC programs and their corresponding cloud
states, the lifting process is equivalent to translating cloud states
back to exactly the same original programs. However, finding the
appropriate translation is a complex exploratory task that cannot
be managed by manual efforts or simple heuristics. Instead, we
leverage the capabilities of emerging AI agents, while addressing
domain-specific challenges that arise.

(1) Complexity of cloud environments. Lifting rule extraction
faces a combinatorial search space. On one hand, IaC pro-
grams contain many inter-connected, hierarchical IaC re-
sources, each with their own attributes. On the other hand,
cloud providers offer thousands of RESTful APIs, each of
which contains information useful to some part of the lift-
ing task. A naive application of LLMwould struggle to build
connections between the two, resulting in low coverage.

(2) Inaccuracy caused by hallucination. Lifting rule extraction
is a safety-critical task. Incorrect rules introduced by LLM
hallucination could directly lead to incorrect lifting results,
which might take a large amount of manual efforts to fix.
If users fail to notice or fix some of these errors, then the
lifting results could contain resource drifts where IaC re-
sources do not match with cloud states, jeopardizing the
reliability of the entire cloud infrastructure.

(3) Ambiguity within learned results. Lifting rule extraction has
stringent requirements on the format of final and interme-
diate results. Given that our goal is to directly plug learned
rules into a symbolic lifting engine, all the results generated
by LLM must follow the grammar of lifting engine, without
any inconsistencies or ambiguity. Failing to do so would
necessitate manual processing of the learned rules, which
negates the benefit offered by our automated pipeline.

3 SOLUTION SKETCH

In this section, we outline the roadmap for Lilac, a fully automated
IaC lifting rule extraction pipeline. Figure 3 illustrates the workflow

of our three-phase system design. The pipeline begins with a set
of IaC programs that initiate greenfield deployment tests. In the
Task Decomposition Phase, Lilac breaks these programs into incre-
mental tests to control cloud environment updates and guides API
selection through an agent. During the Verified Exploration Phase,
the Cloud Query Agent interacts with the cloud environment via
APIs, retrieves resources in IaC format, and verifies their correct-
ness using IaC-Native Verification. Finally, verified observations are
condensed into generalizable rules stored in the knowledge base,
enabling future lifting of brownfield deployments to IaC.

3.1 Task Decomposition Phase

Given input IaC programs and candidate cloud APIs, Lilac firstly
decomposes the task of learning the relation between IaC programs
and available API calls by (1) divide-and-conquer resource blocks
within each IaC program, and (2) filtering out API calls that are
irrelevant to the target resources.

3.1.1 Incremental Resource Deployment. The mapping between
IaC resource blocks and cloud states is highly asymmetric and case-
by-case. There is no one-for-all mapping between the modification
in IaC program and the resulting cloud state update. As an example,
while adding a virtual machine in Terraform simply corresponds to
provisioning a new virtual machine in Azure, creating a VM-data
disk attachment block does not create any new Azure resource
instances. Instead, it updates the storageProfile property of the
VM with information on the newly attached disk. Consequently,
feeding entire IaC programs directly into the pipeline makes it
hard to distinguish the impact of each IaC resource blocks on cloud
states, which hampers the reverse path learning process. Lilac mit-
igate this problem by deploying IaC resources within each program
incrementally, allowing our pipeline to find the exact mapping be-
tween IaC resource deployment and cloud state updates. To achieve
this, we transform each input Terraform program into a sequence
of transition steps, with each step adding a single resource to the
cloud. Essentially, we perform topological sorting among resources
based on their dependencies, to decide which resources should be
created before others during incremental deployment.

3.1.2 API Selection Agent. Given an incrementally deployed IaC
resource block, our cloud API selection agent predicts cloud API
groups that are relevant to the target resource. This is a necessary
step so that the pipeline does not get lost on among thousands
of available APIs. To achieve this, we construct the agent using
Retrieval-Augmented Generation (RAG), which matches target re-
source against the text descriptions and usage examples of cloud

3
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Figure 4: Example Scenario of Brownfield Deployment Lifting: VM, datadisk and VM-datadisk attachment in Azure

API documentation to find the most relevant API groups. It fur-
ther ensures the number of APIs in each group stays within the
LLM’s context windows for more accurate model output. This step
is crucial because there is no clear, predefined mapping between IaC
types and cloud service categories or API families. Current solutions
require developers to manually parse extensive API documentation
to select suitable options, which is highly inefficient.

3.2 Verifiable Exploration Phase

Given a deployed IaC resource and its relevant cloud API groups,
Lilac initiates an exploration phase to experiment on how cloud
APIs and their responses could helpwith lifting cloud states.We also
incorporate verification to guide the agent for accurate discovery
and pave the path for future general rule extraction.

3.2.1 Cloud Query Agent. Given an IaC resource and relevant API
group as inputs, an LLM-powered agent explores the cloud en-
vironment to retrieve information useful for lifting. Within each
iteration, the agent can take one among three actions: 1) calling
cloud API sequences to query relevant cloud resources and their
child resources; 2) generating the target IaC resource block if the
information from API responses is sufficient; 3) requesting the API
Selection Agent to select a new API family if no suitable APIs are
available. Across these iterations, we record all the actions the agent
takes along its exploration path, and feed them as input to the next
step verification. As feedback, later verification would return any
error messages detailing the location and root cause of errors in
the agent’s lifted program, with which our Cloud Query Agent
continuously refines and updates the query and lifting path.

3.2.2 IaC-Native Verification. Verification is critical to ensuring
the correctness of the agent workflow and the extracted lifting
rules. Multiple rounds of testing with IaC-native verifiers should
be performed to meet various correctness criteria.

(1) Existence Check: When a target resource is identified, Lilac
attempts to import the corresponding resource into Ter-
raform using the retrieved ID, ensuring that the cloud query
agent is not hallucinating nonexistent resources.

(2) Equivalence Check: Lilac asks Terraform’s backend to syn-
chronize lifted IaC programs with the cloud provider to
detect any state drift, ensuring the lifted program correctly
describes the current cloud states.

(3) Redeployment Check: To check the usability and portabil-
ity of lifted programs, Lilac performs deployment based

testing to observe whether the lifted programs can restore
current cloud states from empty.

3.3 Knowledge Integration Phase

In this phase, the agent’s unstructured observations from specific
resource queries are consolidated into generalizable rules within
our dynamic knowledge base. This well-structured rule set supports
reproducible lifting from brownfield deployments.

3.3.1 Query Rule Knowledge Base. It consolidates the cloud query
agent’s observations into structured rules, enabling accurate and
reproducible IaC lifting. Initially, the agent records all intermedi-
ate steps involved in the successful retrieval of each IaC resource,
updating these observations in a dynamic knowledge base. These
observations are then transformed symbolically into a formalized
set of query rules, comprising the following categories:

(1) Cloud Discovery Rules define how to retrieve cloud resources
and identify IaC components that can be lifted into the out-
put program. Key elements include: (1) API Query Chain:
sequences of APIs that navigate the hierarchical cloud topol-
ogy to locate target resources. (2) Cloud-IaC Resource In-
ference: A mapping of specific cloud resources and their
properties to corresponding IaC resource types, enabling
accurate identification of liftable components.

(2) Cloud Mapping Rules handle the detailed mapping of ob-
served cloud resources to their IaC representations. For
instance, Attribute-level Lifting Condition determines which
components should be represented in the IaC output. As
illustrated in Figure 2, when an OS disk and a data disk are
discovered, only the data disk is generated as a standalone
IaC resource, while the OS disk is nested inside the VM.
This avoids redundancy and ensures synchronization with
the cloud state.

(3) Dependency Restoration Rules focus on re-establishing the
connections between the IaC resource and form hierarchi-
cal structure of IaC topology. Unlike existing tools that
hardcode resource IDs (e.g., aws2tf), which prevents rede-
ployment of infrastructure since old IDs are invalidated
once destroyed, Lilac leverages chained cloud query API
calls and analyze nested attributes in API responses. Mined
rules accurately represents hierarchical topologies and en-
sures the lifted program can manage dependencies and
maintain portability across deployments.
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Tools aztfexport Lilac

False Positive (redundancy) 4.6% 2.3%
False Negative (oversight) 7.0% 0

Table 2: Lifting Error Rate of aztfexport and Lilac

3.3.2 Brownfield Deployment Lifting. When lifting a brownfield
deployment, Lilac relies solely on the query rules stored in its
knowledge base. This means that once an IaC resource has passed
through the previous two phases, we can lift the same type when
encountering it in future lifting.

An example scenario in Figure 4 illustrates how to leverage
those rules. In the resource group to be lifted, there is a VM and its
associated data disk. To represent this topology in Terraform, we
need resource blocks for both the VM and datadisk, along with a
separate attachment declaration. The process begins by querying
the top-level resources in the group and identifying the relevant
cloud APIs corresponding to the cloud resource types, as defined
in the “Cloud Type-API Map”. For instance, we might pick out the
list vms to query details of all VMs in the group. Once we obtain
the API response, typically a JSON object, we parse it using the
inference rules from “Response Inference Map”. For example, the
“VM.id” entry indicates a VM in the IaC context, as well as the
parent resource ID needed for a potential data disk attachment.
Next, using the “API Tree Map”, we move to the relevant child API,
list disks under a vm, with the required argument VM.name
extracted from the previous response. From this subsequent API
response, we inferred the full ID of the VM-datadisk attachment in
the IaC configuration.

4 PRELIMINARY VALIDATION

In this section, we show that our current prototype could extract
many important rules and use them to lift real infrastructure, with
results surpassing manually implemented lifting tools. For all eval-
uation items, we first deploy resources via Terraform, and then use
the original programs as lifting ground truth.

RQ 1: Can Lilac outperform existing cloud-agnostic tools? Exist-
ing cloud-agnostic lifting tools suffer from narrow coverage, typi-
cally supporting only about 10% of resources for each major cloud
provider (Table 1). These tools often isolate resources without es-
tablishing the necessary connections between them. In contrast,
Lilac accurately restores these dependencies. For example, in a
deployment where a network is safeguarded by a security group,
TerraCognita generates separate IaC descriptions for the two re-
sources, completely ignoring their relationship. By comparison,
Lilac includes an association block to accurately represent their
connection. Similarly, Lilac support resources such as the associa-
tion between subnet and route table, as well as attachment between
VM and data disk, all of which are overlooked by existing cloud-
agnostic tools. Our following comparisons with cloud-specific tools
further highlight our advantages over cloud-agnostic tools, as the
former already outperform the latter within their respective cloud.

RQ2: Can Lilac achieve results on par with cloud-specific tools?

We evaluated 43 popular Azure resources in Terraform, focusing
on topology reconstruction, and recorded the error rate for lifted

Category Terraform(IaC) Type

ComputeNetwork
FirewallPolicy

network firewall policy
network firewall policy association

network firewall policy rule

ComputeRouter router interface, router peer
router NAT, router NAT address

NetworkPeering network peering
network peering route

Table 3: Example List of Lilac Supported Resource out of

gcloud export Coverage

instance numbers in Table 2. Both tools accurately lifted most re-
sources but occasionally produced redundant resource blocks (false
positives). For Lilac, these errors stem from incomplete rule min-
ing due to limited input programs, which could be resolved with
a more comprehensive dataset. Notably, Lilac successfully lifted
all baseline resources, while aztfexport missed some components
(false negatives), such as the firewall rule collection for NAT. These
results demonstrate that Lilac delivers performance comparable to
advanced, specialized tools like aztfexport, with significantly less
manual effort.

RQ3: Can Lilacmine the lifting rules that cannot be covered by cloud-

specific tools? We tested Lilac on popular resource types that are
not supported by the official Google lifting command, the best
support for Google cloud so far. Our experiments demonstrate that
Lilac successfully lifts these resources, which would otherwise be
ignored when using gcloud export. Table 3 highlights a selection
of resources that Lilac supports but are not handled by Google’s
tool. In addition, Lilac not only includes these components but
also captures the necessary associations, configuring the firewall
within the network and specifying detailed rules to manage firewall
behavior. In this way, Lilac delivers a more accurate and high-
fidelity representation that ensures semantic equivalence with the
original infrastructure configuration.

RQ4: How efficiently does the symbolic design assist AI agents in

knowledge extraction? In our neurosymbolic solution, we use sym-
bolic methods to guide the exploration process of our Cloud Query
Agent. This includes incremental resource deployment to control
updates to the cloud environment, and IaC-native verification to val-
idate agent’s observation. To evaluate the impact of this design, we
conducted an ablation study where we removed these components,
transforming the pipeline into a pure LLM-driven approach.

Figure 5 illustrates the percentage of successfully lifted resources
in Azure under various configurations. The results indicate that
without symbolic guidance, lifting accuracy drops significantly as
the size of the input IaC program increases. Removing incremental
resource deployment reduces accuracy for larger resource groups
due to the increased complexity of managing resource dependencies
without structured guidance. Omitting correctness verification sub-
stantially impacts accuracy, as agents querying irrelevant resources
can pass through the pipeline, resulting in problematic rules for
future use. These findings demonstrate that a purely LLM approach
is insufficient to support IaC lifting, underscoring the importance
of Lilac design for reliable and effective performance.
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Figure 5: Ablation study of Lilac pipeline

5 RELATEDWORK

Cloud Infrastructure-as-Code. IaC has emerged as a leading
paradigm for cloud operation management [18, 32]. Recent research
on IaC has focused on areas such as security policy enforcement
[21, 27] and program testing [33, 34]. Two relevant lines of work
include LLM-aided IaC synthesis [26] and semantic rule mining for
IaC programs [31]. Lilac extends IaC research by addressing the
critical challenge of program lifting, essential for intelligent cloud
provision and migration.
LLM-aided cloud management and AIOps. LLM agents are
ideal tools for automating cloud operations [23], with recent work
exploring IaC code generation [26], cloud incident analysis [35],
infrastructure safeguarding [20], cloud API interactions [29], as
well as logs analysis [25]. While promising, none of them have
touched the demand for IaC lifting.
Program lifting and bidirectional lens. Verified Lifting [8], syn-
thesizing high-level programs from low-level counterparts with
verified correctness, has been explored in various contexts, such
as lifting Java to parallel data processing frameworks [15–17]. Re-
search on bijective programming lenses [19, 28] or bidirectional trans-
formation [22, 24] further studies programming language constructs
for mappings across data formats. Lilac performs a complementary
study in the context of cloud management practices.

6 CONCLUSION

Infrastructure-as-Code (IaC) is a leading paradigm in cloud resource
management. Emerging IaC platforms allow users to describe and
deploy their intended infrastructure with ease. IaC lifting is a task
that aims at transplanting brownfield non-IaC infrastructure back
into IaC programs—a reversal of the traditional IaC deployment
workflow. However, existing attempts at IaC lifting struggle to
meet diverse user expectations and consume extensive engineering
efforts. Our proposed system, Lilac, outlines a vision for fully auto-
mated IaC lifting. It applies a neurosymbolic approach to automate
the lifting rule discovery and utilization with cloud-agnostic design.
A full realization of our vision will extend the benefits of IaC to all
cloud practitioners, greatly simplifying their resource management,
migration and scaling workflow.
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