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Abstract

Infrastructure-as-Code (IaC), an important component of cloud computing, allows
the definition of cloud infrastructure in high-level programs. However, developing
IaC programs is challenging, complicated by factors that include the burgeoning
complexity of the cloud ecosystem (e.g., diversity of cloud services and workloads),
and the relative scarcity of IaC-specific code examples and public repositories.
While large language models (LLMs) have shown promise in general code genera-
tion and could potentially aid in IaC development, no benchmarks currently exist
for evaluating their ability to generate IaC code. We present IaC-Eval, a first step
in this research direction. IaC-Eval’s dataset includes 458 human-curated scenarios
covering a wide range of popular AWS services, at varying difficulty levels. Each
scenario mainly comprises a natural language IaC problem description and an
infrastructure intent specification. The former is fed as user input to the LLM,
while the latter is a general notion used to verify if the generated IaC program con-
forms to the user’s intent; by making explicit the problem’s requirements that can
encompass various cloud services, resources and internal infrastructure details. Our
in-depth evaluation shows that contemporary LLMs perform poorly on IaC-Eval,
with the top-performing model, GPT-4, obtaining a pass@1 accuracy of 19.36%. In
contrast, it scores 86.6% on EvalPlus, a popular Python code generation benchmark,
highlighting a need for advancements in this domain. We open-source the IaC-Eval
dataset and evaluation framework at https://github.com/autoiac-project/iac-eval to
enable future research on LLM-based IaC code generation.

1 Introduction

Cloud computing has become a cornerstone of our digital infrastructure. According to recent
reports [39, 17], 94% of all enterprises use cloud services of some form. Building on this trend,
“Infrastructure as Code” (IaC) has emerged as the standard for developing cloud infrastructure. IaC
allows users to codify their desired infrastructures within high-level IaC programs, which can be
deployed repeatably and consistently. The IaC frameworks in turn are responsible for provisioning
the underlying resources (e.g., compute instances) specified in the program, by interacting with
cloud-specific APIs. The most widely adopted tool leading this paradigm is Terraform [20], and
is the focus of our paper. Terraform programs (otherwise known as configuration files) are written
in the HCL language [50]; Fig. 1a illustrates a simplified example of such a program, where we
construct an infrastructure consisting of a compute instance (VM) connected to a network. First, we
have resource blocks which define instances of specific infrastructure components. Cloud services
typically encompass multiple resources, each representing a distinct part of the service, and the
selection of these resources depends on the specific use case; here, we need a SUBNET and NIC,
both essential parts of the virtual private cloud service, a key networking component. Second, these
resource blocks contain various attributes that dictate their instantiation. Attributes can have different

Preprint. Under review.

https://github.com/autoiac-project/iac-eval


value types, including strings, enum types (e.g., “US-west”), lists (the value of nic_ids), and even
nested structures (the cpu_options attribute). Third, these resources can be interconnected through
specific attributes, forming a dependency graph. In our example, the three resources are interlinked:
the VM is connected to the NIC via the nic_ids attribute, while the NIC and SUBNET are connected
through the subnet_id attribute.

Developing IaC programs is a challenging task. For one, cloud infrastructures can be built using a
vast array of services offered uniquely by various providers (e.g., AWS, GCP), each with complex
domain-specific details/rules frequently underspecified at the IaC level [41], requiring deep cloud
expertise to get right. Second, this could involve learning a new language, as is the case for Terraform,
whose programs are specified in the feature-rich HCL language [50], which is a domain-specific
language unfamiliar to most developers (e.g., as evidenced by the relative scarcity of IaC-specific
code in public repositories compared to general-purpose languages [47]). Third, this complexity is
further compounded by the growing diversity of cloud workloads incorporated within enterprises,
extending beyond a few broad categories of Software-as-a-Service (SaaS) products [15], which in
turn demands highly customized cloud infrastructures. Consequently, it is no surprise that 92% of
enterprises employ extensive cloud engineering teams to manage this highly customized and intricate
infrastructure [19].

We believe LLMs are a natural next step to aid in the process of creating infrastructure code. Indeed,
LLMs have shown promise for general code generation, as exemplified by models such as Codex,
CodeLlama [34], and AlphaCode [29]. As a result, a surge of datasets and benchmarks have emerged,
such as the widely used hand-crafted HumanEval [13] (Python programming), to quantify how
well these models perform. Unfortunately, while existing models and datasets/benchmarks target
general-purpose languages, the ability of existing LLMs to effectively generate IaC code remains
uncertain, since there exist no systematic studies nor datasets/benchmarks available to quantitatively
evaluate LLM performance on IaC code generation.

IaC-Eval bridges this gap with the first dataset and benchmark for evaluating IaC code generation.
As a first step in this domain, our dataset (Sec. 3.2) specifically targets AWS, the most popular
cloud provider [49]. Our dataset includes 458 human-curated scenarios (comparable in size to the
HumanEval dataset [13] which contains 164 programming problems) covering a variety of popular
services, compiled over 1720 hours, ranging from simple to highly challenging scenarios that involve
multiple resources across various services which can contain hundreds of lines of code (LoC). Each
scenario consists mainly of a natural language problem description (e.g., “Create an AWS database”)
fed as user input to the LLM, and an infrastructure intent specification (Sec. 3.3) to check against the
LLM generated program. This intent specification fulfils two key objectives:

Objective 1: Determining user intent fulfilment. The specification ensures that the generated IaC
program conforms with the user’s intent by explicitly detailing the problem’s requirements, which can
include various cloud services, resources, and internal infrastructure details. Crafting specifications
is challenging, because just like regular programs: (1) User requirements for cloud infrastructure
can be ambiguously specified. For instance, there are nearly a dozen ways to create an “AWS
Database” [9] (e.g., DynamoDB, RDS). (2) Cloud infrastructure can also be complex. There are over
4,000 providers within the Terraform ecosystem alone [2], each offering unique services composed of
resources utilized in various ways. For example, AWS alone provides more than 200 services, each
with multiple configuration options and interdependencies. These services can sometimes involve
dozens of interlinked resources, with specific instantiation details governed by provider-specific rules
that may or may not be publicized [41]. Furthermore, with new services and updates continuously
being introduced [10, 22], the landscape is constantly evolving, adding to the complexity. Overall,
this means that the resulting specification for each problem description will codify a range of possible
intent-fulfilling IaC programs, requiring deep cloud and IaC expertise to get right.

Objective 2: Scalable evaluation. Checking for intent fulfilment in IaC-Eval does not require execut-
ing the IaC programs, which typically involves deployment directly onto the cloud. Notwithstanding
the fact that successful deployments are not an indication of correct fulfilment of user intention, this is
problematic because deployments can take a significant amount of time—even simple configurations
may require minutes to hours to deploy [41], making it an impractical evaluation strategy. Instead of
waiting for a full deployment cycle (e.g., relying on knowledge from a state file [51] which will only
be produced after a successful deployment), our evaluation benchmark relies only on compile-time
operations that can be completed quickly and do not necessitate deployment (Sec. 3.1).
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(a) Simplified example IaC program. (b) IaC-Eval evaluation workflow.

Figure 1: IaC-Eval evaluation benchmark overview, and example IaC program.

Comprehensive evaluation. Finally, we conduct a detailed evaluation (Sec. 4) against a range of
state-of-the-art models known for their strong performance on the EvalPlus [32] benchmark (an
improved version of HumanEval). Our results show that these models perform poorly on IaC-Eval,
even with various enhancement strategies.

2 Related work

LLMs for code. LLMs have shown impressive performance in code generation (and its subtasks
including code translation [27, 43] and program repair [54]) for general-purpose programming
languages, where a model is typically provided with natural language descriptions of the desired
functionality and asked to generate the corresponding code snippet. Models include OpenAI’s
ChatGPT/GPT-4, Codex [36], CodeLlama [34], and WizardCoder [33]. Our work aims to determine,
for the first time, whether these models can also perform well in generating IaC programs (Sec. 4).

Code evaluation metrics for LLMs. Text similarity metrics (e.g., BLEU [38]) and human evalua-
tion [28] do not work well for evaluating general-purpose programming languages for various reasons
(e.g., minor dissimilarities can result in significant problems/errors [6], while human evaluation is not
scalable). LLM code generation is instead commonly evaluated based on functional correctness using
the pass@k [13] metric, which makes use of input-output test cases: a code segment is considered
correct if it passes all such test cases. IaC-Eval focuses on functional correctness as well, but applies
this to a cloud infrastructure scenario using intent specifications.

Coding benchmarks for LLMs. These include the widely studied HumanEval [13] benchmark
consisting of 164 hand-crafted programming problems, and the MBPP [6] (1K programming prob-
lems) benchmark, built for evaluating Python code generation. Benchmarks targeting other languages
include Spider [56] (SQL), CodeContests [29] (C++ and Java). CloudEval-YAML [55] is closely
related to our work as it focuses on the cloud domain; it provides a dataset for specific cloud applica-
tions (i.e., Kubernetes, Envoy, and Istio) composed of simple YAML configurations. IaC-Eval instead
focuses on cloud infrastructure, a vastly different and more complex domain, and introduces the first
IaC dataset consisting of 458 hand-crafted problems, and a unique evaluation pipeline (Sec. 3).

3 The IaC-Eval benchmark and dataset

3.1 IaC-Eval benchmark: a high-level overview

We first describe our evaluation benchmark’s overall workflow, illustrated in Fig.1b. Notably, we
combined existing components natively supported by IaC (to benefit from continuous updates and
robust support) into a novel benchmark for evaluating IaC code generation. 1 First, a problem
description is retrieved from the dataset (Sec. 3.2) and fed to the LLM under evaluation. 2 The
resulting LLM-generated IaC program is then fed into a two-phase pipeline that determines if
the program is correct (or incorrect) without requiring deployment. 3 In the first phase, the
generated IaC program is transformed into a speculative deployment plan using the native terraform
plan [21] command, which produces a dependency graph. This phase includes basic validations to
ensure syntactical accuracy and adherence to a limited set of cloud provider-specific requirements.
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Figure 2: IaC-Eval dataset service and difficulty distribution.

Configurations failing this step are deemed incorrect by IaC-Eval. 4 Next, the problem’s user
infrastructure intent specification (Sec.3.3) written in the Rego language [35] is 5 matched against
the dependency graph using OPA [48], the most widely used IaC policy engine; a tool typically
used to define policies (e.g., security, conformance), that IaC-Eval repurposes to evaluate user intent
fulfilment. If no errors are found, the IaC program is considered correct.

3.2 Dataset characteristics

IaC-Eval’s dataset is structured with each row consisting of three key columns: (1) a natural language
prompt describing the problem, (2) user intent specifications written in Rego (Sec. 3.3), and (3) one
example of a correct configuration written in Terraform HCL [50], which we envision could be useful
in the future for fine-tuning purposes. Creating this dataset requires significant domain knowledge
and a deep understanding of cloud services and the intricacies of cloud infrastructure orchestration. It
also demands proficiency in two languages markedly different from regular imperative languages:
namely, HCL and Rego, which are complex declarative languages unfamiliar to regular developers.

Fig. 2 illustrates that our dataset addresses a comprehensive set of commonly used cloud infrastructure
services [46, 40, 25], where each problem count is represented by some resource in a given service.
This includes a full stack of infrastructure components typically required in cloud environments: (1)
Compute services: EC2, Lambda, and Lightsail; (2) Relational and in-memory databases: RDS and
ElastiCache; (3) Data warehouses: Redshift; (4) Networking elements: virtual private cloud (VPC),
Route53 (DNS service), and API gateways; (5) Content delivery networks: CloudFront; (6) Key-value
stores: DynamoDB; (7) Object storage: S3; (8) Security: identity and access management (IAM),
and monitoring service (Cloudwatch); (9) Stream processing: Kinesis, and managed Kafka (MSK).
We note that certain services (in particular, VPC and IAM) are often required across problems, and
hence appear disproportionately in the dataset; in contrast, certain other services aren’t composed of
many distinct resources, and hence appear to have fewer counts in the dataset. Services are often
interconnected in various configurations, requiring multiple services to address a single problem (e.g.,
an RDS instance deployed in a specific VPC). All of these services are also made up of a diverse set of
lower-level resources that control more fine-grained functionality: for instance, as shown in Fig. 3(a),
within the Aurora service, we could instantiate an Aurora DB cluster resource [7] (deployed across
multiple regions), that utilizes a DB proxy [8] to pool/share database connections. Furthermore, each
of these resources can be configured in unique ways through various default and optional attributes
(e.g., setting an idle timeout duration for the DB proxy).

Finally, we introduce a system of difficulty levels for IaC problems. We recognize that determining
these levels is inherently ambiguous and subjective, akin to the informal designations used by online
programming platforms (e.g., LeetCode [5]) and in existing research [33]. Nevertheless, we propose
an approximation that can calculate a difficulty level automatically by parsing the configuration, that
is based on LoC, the number of resources, and their interconnections in the desired configuration
(Appendix. A.4). The inset figure within Fig. 2 shows a full spectrum of difficulty levels found
within our dataset, with over half of our dataset consisting of configurations with more than 4
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Figure 3: IaC-Eval dataset row simplified snippet.

interconnections, 4 resources, and over 42 LOC, and the longest configurations having either 280
LOC, 24 resources or 33 interconnections.

3.3 Infrastructure intent specifications

Just like regular coding problems, infrastructure problems can often be specified ambiguously, where
the user’s intention is not always clearly defined. To address this, we use OPA Rego to encode a range
of possible correct configurations for a given problem, creating an infrastructure intent specification
crafted by a human expert. This step is crucial because functional correctness processes alone, such
as ensuring configurations can be compiled, cannot resolve ambiguities in the user’s intent. Intent
specs in our dataset vary in length, averaging 37.5 LOC, and the longest spec containing 205 LOC.

In general, the specification will contain three categories of intents (i.e., clarifying three sources of
ambiguity): (1) valid resources, (2) optional attributes, and (3) required attributes. The valid resources
specify their dependencies and the number of resources allowed. The optional attributes specify their
existence, and/or the range of acceptable values whereas the required attributes mandate the range of
acceptable values. Note that anything not included in the specification is considered incorrect. This is
showcased via an example in Fig. 3(b): For example, for valid resources, the intent spec contains
a validation block (is_valid_aws_db_proxy) that checks if an aws_db_proxy resource exists in
the LLM-generated config. Further, specifying a connection timeout limit for an aws_db_proxy
is optional according to cloud-provider guidelines; however, since it is explicitly specified in the
prompt, the intent will enforce its value to be between 1800 and 3600 (while inferring that this is
specified in seconds). As another example, the intent infers that daily DB backups are equivalent
to simply including a preferred_backup_window attribute, with the example timing of morning
backups being irrelevant. For required attributes, the engine_family attribute within the proxy is
constrained by the user prompt to only use a subset of valid cloud-provider-defined values. We do
not need to verify the existence of required attributes, as these are automatically validated during the
compilation phase.

We emphasize that crafting the initial batch of dataset intents is challenging, but there is significant
reuse potential across multiple configurations. The intents we have created can serve as templates
(e.g., a validation block for a given resource), allowing for easier adaptation with minor adjustments.
Moreover, problems often imply the existence of many interlinked required or optional resources
each with their own attributes. For instance, creating an EC2 instance not only requires an attached
AWS network interface card but also depends on a VPC, which in turn requires subnets and route
tables. This chain of dependencies can extend even further, including security groups, IAM roles,
and policies. Since manually specifying all these details at this stage is impractical, we leave some
aspects under-specified, similar to the approach seen in HumanEval [32]. An example is provided in
Fig. 3(a), where an IAM role, which governs the actions executable by the DB proxy, is attached to
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Table 1: Average benchmark scores for various models when tested against various evaluation metrics.
Popular LLMs perform poorly on IaC-Eval, showcasing its difficulty.

Model Evaluation metric
Rank Name BLEU CodeBERTScore LLM-judge IaC-Eval

1 GPT-4 18.49 83.39 61.79 19.36
2 WizardCoder-33B-V1.1 15.22 80.50 28.72 8.93
3 GPT-3.5-turbo 14.52 77.26 34.49 7.99
4 Magicoder-S-CL-7B 14.22 79.49 23.14 7.62
5 Gemini 1.0 Pro 11.96 78.90 19.72 3.43
6 CodeLlama Instruct (34B) 11.47 78.64 11.97 2.99
7 CodeLlama Instruct (13B) 11.18 76.46 9.83 2.01
8 CodeLlama Instruct (7B) 9.31 70.22 7.18 1.97

the proxy via the role_arn attribute. The actual IAM role resource block itself is omitted for brevity.
The role_arn is a required attribute of the resource, and its presence in a correct configuration is
therefore implied (not explicitly stated) in the prompt. To simplify crafting intents, we only verify
the existence of the aws_iam_role resource block and ensure that its policy is not empty; we do
not check its content. With this base dataset, we envision a move towards the automatic synthesis of
intents (Sec. 5) to facilitate the expansion of our dataset with increased service/provider coverage.

4 Experiments

4.1 Evaluating LLMs performance on IaC-Eval

We evaluate a range of code generation models used within the popular HumanEval [13] and
EvalPlus [32] Python code benchmarks, against IaC-Eval. These include the top-ranked GPT4, Wiz-
ardCoder [33] and Magicoder [52] models, and CodeLlama [34] variants. Inference was performed
using OpenAI APIs for GPT-4 and GPT-3.5, and Replicate [42] endpoints for all the other models,
except for Magicoder, which was deployed on a g5.2xlarge instance running an NVIDIA A10G
GPU (24 GB memory) via AWS SageMaker. We use the unbiased version of pass@k [13], a standard
metric also used in the aforementioned benchmarks, to assess correctness by generating 20 samples
for each problem. This method gives us the probability that at least one out of k chosen samples among
the 20 is correct. The IaC-Eval column of Table 1 showcases our results where scores are tabulated in
terms of pass@1 accuracy: our top-ranked models are GPT-4, WizardCoder-33B-V1.1, and GPT3.5,
achieving a score of 19.36%, 8.93%, and 7.99%, respectively. Our worst-performing model was
CodeLlama instruct (7B) which scored 1.97%. This is in stark contrast to these models’ performance
on EvalPlus, where they scored 86.6%, 73.2%, 70.7%, and 35.4%, respectively; highlighting the
difficulty of our dataset [18], and demonstrating that current models are ineffective at generating
IaC code. Further, extended results containing pass@k scores for all k values are showcased for the
Top-6 performing models in Fig. 4a. We observe improvements across all models with increasing k
values, except for Magicoder; upon closer inspection, we found that this is because Magicoder tends
to get correct answers for a narrow set of problems consistently, where generating more samples does
not yield significant accuracy improvements. Finally, we showcase an example incorrect generated
IaC program in Fig. 6, demonstrating that even GPT-4 can exhibit issues such as hallucinating entire
service components.

Impact of intents and difficulty on evaluation scores. To examine the utility of our benchmark’s
two-step pipeline, we compare the accuracy (Fig. 5a) when only Terraform compilation checks are
used (blue hatched bars), and when both compilation and intent checks are used: across all models,
intent specifications helped remove over ≈50% of false positives, i.e., programs deemed correct
by the Terraform compilation phase but are actually incorrect as they do not satisfy user intent.
Separately, our results in Fig. 5b show that complex IaC-Eval problems are harder for models to
solve, demonstrating the efficacy of our system of difficulty levels.

4.2 Comparing IaC-Eval against baseline metrics

We compare IaC-Eval against three existing metrics with results tabulated in Table. 1:
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Figure 5: Ablation: effectiveness of intent specifications and complexity levels.

BLEU and CodeBERTScore. Both are widely utilized to assess the quality of machine-produced
translations [13, 55] by determining how similar some generated text is to a reference text; unlike
BLEU [38] which is general purpose, CodeBERTScore [58] is specifically designed for code gen-
eration. Both produce scores ranging from 0 to 1, with higher values indicating better translation
quality. Our results are displayed as percentages: though a downward trend in scores is observed for
both metrics, consistent with IaC-Eval, a deeper analysis reveals that these metrics cannot effectively
differentiate between correct and incorrect solutions (as judged by IaC-Eval), as they frequently
assign similar scores to both, with an average difference of only 6.9% for CodeBERTScore and
8.3% for BLEU. This finding is consistent with existing studies [55, 13], and motivates the use of
functional correctness metrics instead.

LLM-as-a-judge. We also assess our models using the well-known LLM-as-a-judge metric, as
referenced in previous studies [57, 30, 4]. For this evaluation, we employ GPT-4, the top-performing
code model, as the judge. The downward trend in scores suggests that the LLM-judge has some
intuition. However, Figure 4b reveals that its precision is low (hovering between 10% and 30%),
indicating a high rate of misclassification where incorrect solutions are frequently judged as correct.

4.3 Assessing common enhancement strategies

Few-shot and chain-of-thought. These prompting strategies are commonly used in code generation
tasks [11, 26]. Few-shot prompting involves providing a few examples to guide the model. The
specific prompt used in our experiments is detailed in Appendix. B.1, where we employ three-shot
prompting [55]. Chain-of-thought reasoning (CoT) guides the model through a step-by-step process
to arrive at a solution, mimicking human logical progression. In our approach, we ask the model
to reason through the overall structure of the desired infrastructure, covering services, resources,

7



Table 2: Average benchmark scores of various models when enhanced with differing strategies,
ranked by highest score across all strategies. Evaluation performed against IaC-Eval. Performance is
slightly improved across the board, especially with multi-turn and RAG.

Model Enhancement strategy
Rank Name Few-shot CoT Multi-turn RAG

1 GPT-4 10.64 9.31 31.12 36.70
2 GPT-3.5-turbo 0.80 1.60 11.44 21.81
3 Magicoder-S-CL-7B 2.93 0.53 12.50 12.77
4 WizardCoder-33B-V1.1 1.60 1.06 9.04 11.70
5 CodeLlama Instruct (34B) 3.19 3.19 2.13 6.12
6 CodeLlama Instruct (7B) 2.39 3.72 0.53 5.59
7 Gemini 1.0 Pro 1.33 0.00 2.93 5.32
8 CodeLlama Instruct (13B) 1.06 1.86 1.06 3.46

and individual attributes (Appendix. B.2). Our findings indicate that these methods yield unreliable
improvements, sometimes even degrading performance. For instance, both strategies reduced GPT-4’s
score from 19.36% to 10.64% and 9.31%, respectively. This is likely due to the extensive service
diversity within cloud infrastructure, limiting the effectiveness of these strategies.

Multi-turn. This is a prompting strategy widely used in existing work [44, 53]. Here we assume the
model has access to an interpreter to evaluate the generation; errors within the compilation phase
are passed back to the LLM as additional context for program repair. Our setup involves two turns
of interaction between the model and the interpreter. We observe a noticeable improvement across
our Top-4 models (5.5% on average), and a slight decrease in performance for our remaining models
(0.92% on average). The specific prompt used is detailed in Appendix. B.3.

Retrieval-augmented generation (RAG) [45]. This approach leverages a vector database [31] that
stores relevant IaC documentation [23] for contextual retrieval. Given the problem input, the LLM
first helps identify key terms and contextual cues to retrieve relevant documentation and code snippets
from our database. The LLM then uses the retrieved documentation snippets as context to generate
the final IaC code. This approach allows the LLM to access examples of similar code snippets, API
documentation, or coding patterns pertinent to the problem, enabling more accurate and contextually
appropriate generation. We observe a noticeable improvement across all models, with an average
increase of 6.14%, making this the most effective strategy we’ve evaluated. Our prompt used is
shown in Appendix. B.4.

Overall, these methods may provide modest improvements, but we hope the introduction of IaC-Eval
will catalyze further research specifically tailored to improving IaC code generation.

5 Discussion

Future directions. One approach is to develop more intricate evaluation metrics to address specific
issues like security breaches, policy adherence, and code quality aspects such as brevity, clarity,
and style [24]. The aim could be to demonstrate that existing models lack “security-awareness”
and could lead to problems, such as: (1) vulnerability to adversarial information extraction attacks,
where attackers can extract IaC-specific secrets from LLMs [12], or (2) failure to follow security best
practices [14], potentially causing naive users to push unsafe code into production. Second, given
our base dataset, we could expand it by implementing automated dataset creation for fine-tuning or
evaluation purposes [32]. Third, advanced compile-time checks are an existing line of work [3, 1, 41]
that we could integrate to increase our coverage. Finally, in terms of improving IaC code generation,
one potential avenue is utilizing two-level synthesis or context injection, which could tailor the code
more accurately to specific contexts, enhancing personalization and precision.

Limitations. There are several avenues for expansion. IaC-Eval currently does not include function
generation, although supported by HCL. Additionally, IaC-Eval focuses on AWS, but we plan to
extend support to other cloud providers like Azure. Despite these limitations, the core concepts
remain consistent across providers.
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Figure 6: Example errors from a GPT-4 generated configuration.

6 Conclusion

We introduce IaC-Eval, the first dataset and benchmark capable of evaluating IaC code generation by
LLMs. IaC-Eval comprises 458 human-curated scenarios that cover a diverse range of popular AWS
services and varying difficulty levels. Our evaluation reveals that current LLMs, including GPT-4,
perform poorly on IaC-Eval, with a pass@1 accuracy of 19.36%, compared to 86.6% on the EvalPlus
Python benchmark. This underscores the need for advancements in LLM-based IaC code generation.
We open-source IaC-Eval to facilitate future research in this domain.
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Table 3: IaC-Eval dataset columns
Column name Descriptor

Resource All resources that this scenario requires.
Prompt User question to be fed to the LLM under evaluation.

Rego intent Validates the generated program for user intent fulfilment.
Difficulty Calculated difficulty level (Table. 4).

Intent Natural language intent for easy viewing.
Reference output Example correct program.

A Additional IaC-Eval details

A.1 Dataset URL and links

Dataset. Links to download or view our dataset can be found on our GitHub homepage at
hhttps://github.com/autoiac-project/iac-eval. The dataset’s homepage, including all future versions
and updates, is hosted at https://huggingface.co/datasets/autoiac-project/iac-eval.

Dataset Documentation. We offer comprehensive descriptions for the dataset and its usage through
the HugggingFace dataset link above. The page covers the data layout, essential metadata, and ways
to load the data for usage.

Dataset DOI. Our persistent DOI is https://doi.org/10.57967/hf/2400.

Code. Our code is available at hhttps://github.com/autoiac-project/iac-eval.

Code Documentation. Within our GitHub repository above, we provide detailed descriptions of
our evaluation benchmark, and instructions on how to setup the benchmark, and run each step to
reproduce our evaluation results; along with instructions on setting up the LLMs required: e.g., on
acquiring the required API keys or setting up of AWS SageMaker.

A.2 Data format

Our dataset (located in our HuggingFace repository) is in a standard CSV format. There is currently
only one file, where we store all our AWS scenarios. The file has the following columns: “Resource”,
“Prompt”, “Intent”, “Rego intent”, “Difficulty”, and “Reference output”. An explanation of their
intended use is provided in Table. 3.

A.3 Maintenance and long-term preservation

The authors of IaC-Eval are committed to the ongoing maintenance and preservation of the dataset,
with plans to potentially expand it for future research endeavors. This commitment includes addressing
any issues identified by the community after the dataset’s release, with feedback monitored through
GitHub or HuggingFace issue trackers. All data is hosted on GitHub and HuggingFace to ensure
reliable and stable storage. Further, we may also consider migrating/replicating the data to archival
storage for long-term preservation.

Findable. Our dataset is stored in the HuggingFace repository listed in the previous subsection. All
present and future data will share a global and persistent DOI https://doi.org/10.57967/hf/2400.

Accessible. Our code can be found through our GitHub repository listed above. Additionally, all data
and descriptive metadata regarding our dataset can be downloaded from the public links listed on the
GitHub repository, or the HuggingFace repository link listed above.

Interoperable. Our dataset is stored in standard CSV files that can be read using many common
libraries, such as Pandas for Python.

Reusable. IaC-Eval’s dataset is released under a permissive Creative Commons Attribution 4.0
license, while our code is released under a permissive MIT license.

A.4 IaC-Eval difficulty levels

Details in Table. 4.
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Table 4: IaC-Eval difficulty levels
Difficulty level Descriptor

1 LOC < 10 and Resource count < 2 and Interconnections count < 2
2 LOC < 20 and Resource count < 4 and Interconnections count < 4
3 LOC < 40 and Resource count < 6 and Interconnections count < 6
4 LOC < 60 and Resource count < 8 and Interconnections count < 8
5 LOC < 80 and Resource count < 10 and Interconnections count < 10
6 LOC ≥ 80 or Resource count ≥ 10 or Interconnections count ≥ 10

B Experimental setup details

Regarding full details of all our prompts used, please refer to our GitHub repository.

B.1 Few-shot prompt template

[System prompt]
You are TerraformAI, an AI agent that builds and deploys Cloud
Infrastructure written in Terraform HCL. Generate a description of the
Terraform program you will define, followed by a single Terraform HCL
program in response to each of my Instructions. Make sure the
configuration is deployable. Create IAM roles as needed. If variables
are used, make sure default values are supplied. Be sure to include a
valid provider configuration within a valid region. Make sure there are
no undeclared resources (e.g., as references) or variables, i.e., all
resources and variables needed in the configuration should be fully
specified.

Here are a few examples:

Example prompt 1: {prompt-1}
Example output 1:
‘‘‘hcl
{output-1}
‘‘‘

Example prompt 2: {prompt-2}
Example output 2:
‘‘‘hcl
{output-2}
‘‘‘

Example prompt 3: {prompt-3}
Example output 3:
‘‘‘hcl
{output-3}
‘‘‘

Here is the actual question to answer:
{question}
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B.2 Chain-of-thought prompt template

[System prompt]
You are TerraformAI, an AI agent that builds and deploys Cloud
Infrastructure written in Terraform HCL. Generate a description of the
Terraform program you will define, followed by a single Terraform HCL
program in response to each of my Instructions. Make sure the
configuration is deployable. Create IAM roles as needed. If variables
are used, make sure default values are supplied. Be sure to include a
valid provider configuration within a valid region. Make sure there are
no undeclared resources (e.g., as references) or variables, i.e., all
resources and variables needed in the configuration should be fully
specified.

Here are a few examples:

Example prompt 1: Create an AWS RDS instance (with an instance class of
db.t2.micro, and don’t create a final snapshot before eventual deletion)
with randomly generated id and password.
Example output 1: Let’s think step by step. First, let’s reason about
the resources needed: this would be an AWS RDS instance
(aws_db_instance), and resources to generate a random id and password.
Second, we fill in the attributes of each resource, starting with those
explicitly and implicitly mentioned in the prompt, and followed by
others: for example, for the aws_db_instance, we need to set the
"instance_class" attribute to "db.t2.micro", and the
"skip_final_snapshot" attribute to true. Finally, we connect the
resources together, as needed: here "identifier" should be connected to
the "random_id" resource, and "password" should be connected to the
"random_password" resource.
‘‘‘hcl
{output-1}
‘‘‘

Example prompt 2: {prompt-2}
Example output 2: {CoT-output-2}
‘‘‘hcl
{output-2}
‘‘‘

Example prompt 3: {prompt-3}
Example output 3: {CoT-output-3}
‘‘‘hcl
{output-3}
‘‘‘

Here is the actual question to answer:
{question}

B.3 Multi-turn prompt template

This prompt is used if a Terraform plan error was observed in the first turn:
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[System prompt]
You are TerraformAI, an AI agent that builds and deploys Cloud
Infrastructure written in Terraform HCL. Given an incorrect Terraform
program along with an error message, your task is to first describe the
error in your own words, followed by a description of the fix you will
apply, and ending with a single corrected Terraform HCL program. Make
sure the configuration is deployable. Create IAM roles as needed. If
variables are used, make sure default values are supplied. Be sure to
include a valid provider configuration within a valid region. Make sure
there are no undeclared resources (e.g., as references) or variables,
that is, all resources and variables needed in the configuration should
be fully specified.

Here is the original prompt:
{prompt}

Here is the incorrect configuration:
{generated-config}

Here is the Terraform plan error message:
{error-message}

This prompt is used if an intent specification error is observed in the first turn:

[System prompt]
You are TerraformAI, an AI agent that builds and deploys Cloud
Infrastructure written in Terraform HCL. Given an incorrect Terraform
program along with an error message, your task is to first describe the
error in your own words, followed by a description of the fix you will
apply, and ending with a single corrected Terraform HCL program. Make
sure the configuration is deployable. Create IAM roles as needed. If
variables are used, make sure default values are supplied. Be sure to
include a valid provider configuration within a valid region. Make sure
there are no undeclared resources (e.g., as references) or variables,
that is, all resources and variables needed in the configuration should
be fully specified.

Here is the original prompt:
{prompt}

Here is the incorrect configuration:
{generated-config}

Here is the Rego OPA policy associated with this configuration:
{intent-spec}

Here is the Rego OPA policy error message:
{error-message}
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B.4 RAG prompt template

[System prompt]
You are TerraformAI, an AI agent that builds and deploys Cloud
Infrastructure written in Terraform HCL. Generate a description of the
Terraform program you will define, followed by a single Terraform HCL
program in response to each of my Instructions. Make sure the
configuration is deployable. Create IAM roles as needed. If variables
are used, make sure default values are supplied. Be sure to include a
valid provider configuration within a valid region. Make sure there are
no undeclared resources (e.g., as references) or variables, i.e., all
resources and variables needed in the configuration should be fully
specified.

Here is some additional knowledge/context retrieved from Terraform
documentation, that may (or may not) potentially help you answer the
question:
{context}

Here is the actual question to answer:
{question}

B.5 Detailed experimental setup

Table 5: Overview of models evaluated by IaC-Eval.
Model Name Size Release Year Open-Source
GPT-4 [37] N/A 2023
GPT-3.5-turbo [37] N/A 2022
Magicoder-S-CL-7B [52] 7B 2023 ✓
WizardCoder-33B-V1.1 [33] 33B 2023 ✓
Gemini 1.0 Pro [16] N/A 2023
CodeLlama-7B [34] 7B 2023 ✓
CodeLlama-13B [34] 13B 2023 ✓
CodeLlama-34B [34] 34B 2023 ✓

We evaluated a range of state-of-the-art models as detailed in Table. 5, which provides a summary of
the models evaluated, their sizes (model parameters in billions), the Release Year indicating when
the model was launched, and the Open-Source column highlighting models with publicly available
weights. In total, we evaluated 8 prominent LLMs that have also been evaluated in the popular
HumanEval [13] and EvalPlus [32] code generation benchmarks. For each model, we randomly
sample 20 programs. Both GPT and our Gemini models were evaluated using their default settings:
greedy decoding where the temperature was set to 0, and unset max token lengths. All the other
models were evaluated using a temperature of 0.6, and 512 max tokens. Inference was performed
using OpenAI APIs for GPT-4 and GPT-3.5, and Replicate [42] endpoints for all the other models,
except for Magicoder, which was deployed on a g5.2xlarge instance running an NVIDIA A10G
GPU (24 GB memory) via AWS SageMaker. We adhered to the official examples provided for each
model (e.g., on HuggingFace model cards) to design their prompts. Specifically, the prompts are
instruction-based, incorporating simple instructions to frame the user prompt, thereby explicitly
guiding the LLMs towards code generation. The code blocks for each model’s output was extracted
using a set of well-known and observed delimiters (e.g., within triple backtick blocks). For our RAG
experimental setup, we leveraged the LlamaIndex vector database [31], using it to store all relevant
IaC documentation [23] for contextual retrieval. We chunked the data into 500-word segments, each
indexed separately to enhance retrieval speed and accuracy by ensuring that search operations are
confined to the most relevant subsets of data. For each user prompt, we fed it into GPT-3.5-turbo
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which acted as an intermediary LLM, to summarize and convert the user prompt into a set of questions
for more effective retrieval.
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