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Abstract
Cloud infrastructures are increasinglymanaged by Infrastruc-

ture-as-Code (IaC) frameworks (e.g., Terraform). IaC frame-

works enable cloud users to configure their resources in a

declarative manner, without having to directly work with

low-level cloud API calls. However, with today’s IaC tooling,

IaC programs that pass the compilation phase may still incur

errors at deployment time, resulting in significant disruption.

We observe that this stems from a fundamental semantic gap
between IaC-level programs and cloud-level requirements—

even a syntactically-correct IaC program may violate cloud-

level expectations. To bridge this gap, we develop Zodiac,
a tool that can unearth IaC-level semantic checks on cloud-

level requirements. It provides an automated pipeline tomine

these checks from online IaC repositories and validate them

using deployment-based testing. We have applied Zodiac
to Terraform resources offered by Microsoft Azure—a lead-

ing IaC framework and a leading cloud vendor—where it

found 500+ semantic checks where violation would produce

deployment failures. With these checks, we have identified

200+ buggy Terraform projects and helped fix errors within

official Azure provider usage examples.

CCS Concepts: • Networks→ Cloud computing; • Soft-
ware and its engineering→ Orchestration languages;
Software reliability.

Keywords: Infrastructure as code, cloud management, pro-

gram analysis, configuration mining

1 Introduction
Many enterprises host their IT infrastructures in the cloud,

but configuring and provisioning the underlying cloud re-

sources remains a challenging task. Cloud datacenters are
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Figure 1. Example IaC cloud resource graph & code snippet.

built by providers like Amazon but intended for third-party

use (e.g., tenants like Electronic Arts). This user/owner split

means that cloud tenants have limited visibility and con-

trol beyond the cloud-level APIs exposed by providers to

tenants for resource management. Until recently, tenants

relied on ad-hoc API scripts to manage resources (e.g., vir-

tual machines, firewalls, gateways), which is a cumbersome

process due to the myriad API calls and complex inter-call

dependencies. Working directly with low-level APIs requires

deep cloud expertise, and also creates burden for the tenant

to track their cloud infrastructure state and updates. Hence,

managing cloud resources with API-level scripting has been

proven to be a daunting task.

Infrastructure-as-code (IaC) as a recent trend promises to

simplify cloud management by shielding tenants from low-

level APIs. Frameworks like Terraform [25], OpenTofu [20],

and Pulumi [22] expose a higher-level interface that abstracts

cloud resources as a set of configuration programs. As shown

in Figure 1, tenants codify their desired infrastructure in a

program: in this case, the Terraform snippet configures a

VPC (virtual private cloud) with two subnets on Microsoft

Azure—one for hosting a VM (virtual machine) and its NIC

(network interface card), and a gateway. IaC frameworks

then automatically construct the underlying cloud infras-

tructure by invoking cloud-level APIs based on the declared

resources. This frees tenants from the tedium of working

with API scripts, automating a large part of cloud manage-

ment for ease of use. For this reason, IaC has seen significant

uptake and gained wide popularity [2, 3, 20, 22, 25].

While IaC frameworks help automate provisioning tasks,
mere automation does not beget reliability. In fact, IaC infras-

tructures are especially brittle, because IaC abstractions hide

cloud-level complexities but fundamentally, do not remove
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them. Eventually, IaC frameworks execute provisioning tasks

by handing them off to the cloud-level APIs, thereby sub-

jecting them to the same range of potential errors as before.

Worse, these errors are simply “out of sight” for the tenant at

the development phase, only to manifest later as deployment-

time issues. The Terraform snippet in Figure 1, for instance,

compiles successfully but has two deployment errors. Mi-

crosoft Azure regulates that a) a VM and its NIC must not

be located in different regions, and b) subnet CIDR ranges

cannot overlap with each other. These issues go much deeper

than the syntactic correctness of the IaC program.

We call this problem the semantic gap—even syntactically-
correct IaC programs can induce unexpected cloud behav-

ioral issues because, unbeknownst to the tenant, their IaC-

level declarations conflict with cloud-level expectations; this

is a fundamental problem caused by the tenant/provider split.

The resulting deployment failures could leave the cloud in-

frastructure in an undesirable state, where the infrastructure

provisioning process needs to be halted or rolled back for a

fix. This is exacerbated by the fact that cloud provisioning is

slow—even provisioning a single resource could take hours

in the worst case [4, 5]; hence, fixing a buggy deployment is

time-consuming as it may require destroying and/or recreat-

ing resources for the rollback. Rolling out a fix also requires

deep expertise into cloud-level details, negating the bene-

fits offered by declarative IaC platforms [27]. Furthermore,

runtime deployment failures not only jeopardize the initial

deployment of an IaC infrastructure, but also live updates

to an existing deployment while it is serving user requests.

Because of the potential damage of deployment errors, the

wisdom of the DevOps engineering community is to perform

reliability checks as early as possible, ideally at compilation

phase, so that errors are detected and eliminated before any

damage is done [24]. Because of all the above reasons, ad-

dressing this semantic gap is important to cloud reliability.

At first glance, the heart of the solution might seem clear—

we just need to strengthen the IaC frameworks so that their

compilation phase incorporates such semantic checks (e.g.,
on VM/NIC locations, and CIDR range requirements). While

this approach is correct, the challenge lies in identifying the

needed IaC checks in an automated manner. Cloud-level be-

haviors are opaque and poorly documented, so the required

checks often need an intricate understanding of cloud oper-

ations; they could also evolve over time. Our investigations

show that traces of such checks can be found in some of

today’s tools, but they are manually written by expert devel-

opers; this is a slow and tedious undertaking. Therefore, we

wish to develop support for unearthing semantic IaC checks

in an automated manner from public information.

Our roadmap is inspired by a line of work [60, 61, 70] that

automatically discovers “invariants” for software configura-

tions (e.g., MySQL) by mining open-source repositories to

find configuration checks. Nevertheless, Zodiac faces a set
of unique challenges in the IaC ecosystem. IaC programs are

highly structural “configuration of configurations,” which

contain a myriad of interconnected resources each with dis-

tinct attributes. For instance, the inter-resource connectivity

pattern between a gateway and its subnet and IP would in-

fluence the legality of their specific attribute values (e.g.,

their cloud regions and policies). Moreover, given the com-

plex, blackbox nature of cloud backends, validating semantic

checks also requires end-to-end deployment and observa-

tion. This stands in contrast to existing work that analyzes

software code or online sources, or performs local testing to

determine the validity of configuration checks [60]. Our tool,

Zodiac, tackles these IaC-specific challenges in an automated

pipeline for mining and validating semantic checks.

Themining phase of Zodiac captures the format of IaC

semantic checks and automatically discovers check instances

from online resources.We achieve this by designing a domain-

specific semantic knowledge base and a check specification

language. Jointly, they capture intra- and inter-resource con-

straints commonly seen in IaC programs, and give rise to a

set of semantic check templates that can be used for mining.

Zodiac generates hypothesized checks from these templates,

uses online repositories for statistical filtering, and in certain

cases, relies on large language models (LLMs) to fill in certain

missing information. This produces a refined set of semantic

checks, which we will proceed to validate in the cloud.

The validation phase of Zodiac reasons about the correct-
ness of the checks by deploying IaC programs and observing

their deployment outcome. Since semantic checks exhibit

complex inter-resource correlations, Zodiac must minimize

the interference across hypothesized checks when testing

an IaC program. It relies on the semantic knowledge base

and SMT solving to construct both positive and negative test

cases for precise testing. A semantic check is validated if an

IaC program that conforms to the check successfully deploys,

and a similar program that violates the check fails to deploy.

Zodiac then takes iterative passes over the hypothesized

checks until each check is eventually validated or falsified.

We have applied Zodiac to a leading IaC framework, Ter-

raform, for Microsoft Azure resources. It has extracted 500+

semantic checks for 52 types of popular cloud resources,

many of which are not captured by state-of-the-art IaC tools.

With these checks, Zodiac has found more than 200 buggy

Terraform repositories and our results have been used for

fixing four Microsoft Azure usage examples.

2 Motivation
In this section, we motivate our problem further both in its

real-world relevance and the choice of our techniques.

2.1 Cloud Infrastructure-as-Code Programs
Cloud IaC frameworks are on the rise, with Terraform [25]

leading the market. Terraform enables cloud users (e.g., the

DevOps engineering teams in enterprise companies) to de-

scribe their desired infrastructure in a declarative language,
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Figure 2. Overview of Zodiac pipeline.

akin to a configuration file for software entities (e.g., MySQL).

Recall that Figure 1 shows a Terraform snippet and its com-

piled resource graph representation. The basic unit is a re-
source block, which defines a cloud infrastructure component

(e.g., VM, NIC). Resource blocks are then composed to form

a larger infrastructure encapsulating all needed cloud com-

ponents. Their dependencies specify the relation across cloud

components—e.g., a VM depends on a NIC in order to con-

nect to the network. Thus, an IaC program not only requires

that attributes of each resource are instantiated correctly, but

also that dependencies across resources are correct. Further,

attributes of a single resource also depend on inter-resource

connectivity patterns—e.g., the maximum number of NICs

that a VM could use depends on the specific VM sku [17].

2.2 Syntactic vs. Semantic Checks
IaC frameworks do apply standard compilation checks to

reject erroneous IaC programs (e.g., programs that declare a

non-existent cloud resource type due to incorrect naming).

However, this process hides a vast range of complexities that

nevertheless still surface at deployment time.

IaC frameworks. IaC frameworks like Terraform only check

for syntactic correctness during compilation, but cloud-level

correctness requires deeper semantic checks. Incorporating

additional checks into the compilation phase requires intri-

cate expertise with a particular cloud, and the checks often

need to be identified manually. The engineering practices

of IaC frameworks also do not make semantic checks easy

to incorporate. The core compiler in Terraform is a shim

layer that is independent of cloud providers. If a specific

provider desires to supply additional checks, they must do

so via IaC “plugins,” which only allow for constrained check

formats on individual attributes—e.g., the VM.priority field
must be either Regular or Spot. These check formats cannot

capture more sophisticated, inter-resource checks—e.g., if a

gateway’s active_active attribute is set to False, then it

can connect to at most 1 IP resource. If an IaC program trig-

gers a cloud-level violation, the resulting infrastructure will

be buggy and may require manual fixes and redeployment.

Ancillary IaC checkers. There exist various ancillary IaC

tools [11, 28, 30, 35, 52] that aim to capture more sophis-

ticated checks. Checkov [11] and TFSec [30], in particular,

allow DevOps engineers to add customized checks into their

tools. These tools apply additional checks to an IaC program

after the IaC compilation phase. However, their checks are

manually handcrafted by developers with deep cloud exper-

tise, and they primarily target security/policy compliance

rather than deployment failures. TFLint [29], another re-

lated tool, provides some automation for check generation

through cloud API specification analysis. But its checks only

support per-attribute validation (e.g., available VM skus) and

cannot capture inter-resource semantics.

2.3 Inspiration: Configuration mining
We are inspired by a line of work on automated invariant

discovery via configuration mining, which uses online config-

uration repositories to identify likely invariants, and derive

configuration checks. Configuration mining treats the un-

derlying software as either opaque, with details of internal

behavior unavailable, or transparent.

Works that fall into the first class [70] use association

rule mining algorithms to discover regulations for applica-

tion configurations (e.g., MySQL). While this fits the cloud

setting, whose internal behaviors are unknown to Zodiac, ex-
isting techniques target systems whose configurations have

a “flat” structure, representing correlations between a set

of attributes; in contrast, IaC programs are complex, hierar-

chical configurations of configurations. Moreover, existing

work in this direction also does not consider automated vali-

dation. Validation is often manual (e.g. going through Stack

Overflow posts or GitHub issues)—while this works at the

scale needed for regular software (e.g., dozens of checks for

a specific software entity like MySQL), manual validation

does not scale to the number and diversity of cloud resources.

Works that fall into the second category [69] jointly analyze

software internal with their configurations, allowing them

to capture more complex dependencies, and identifying mis-

configurations that blackbox analyses cannot capture. For

example, years of efforts on network control plane analy-

sis have made it possible to take router configurations as

input and simulate the expected routing behavior (e.g., the

BGP protocol) [36]. Conversely, cloud resources are hard to

model formally, and their implementation details are opaque

to tenants, making whitebox analysis less applicable.

2.4 Zodiac: Zero-Touch Discovery of IaC Checks
Webelieve effectivemining and validation of semantic checks

for cloud IaC frameworks has the following requirements:

• Automated: Both mining and validation phases should

be fully automated, without human intervention.

• High coverage: The mining phase should reason across

resources and attributes to unearth a large set of checks.

• High fidelity: The validation phase should test each

check via actual cloud deployment observations.

Figure 2 shows the overall workflow of Zodiac. It starts by in-
gesting IaC repositories crawled from online sources. Based

on a curated set of check templates using a semantic knowl-

edge base (KB) and a specification language, it generates



a set of hypothesized checks. Next, it performs statistical

filtering and interpolation to reduce false positives and fill

in missing details with the help of LLMs. The hypothesized

checks are then fed into the validation phase. For each such

check, Zodiac identifies conforming instances that could be

used as positive test cases, and it further mutates them to ob-

tain corresponding negative test cases. A check is validated

if the positive test case succeeds to deploy but its negative

counterpart does not. To further resolve conflicts across dif-

ferent checks, Zodiac plans the order of negative test case
generation and deployment via a validation scheduler. We

further discuss these two components in §3 and §4.

3 Mining Cloud IaC Semantic Checks
We start by discussing how Zodiac mines semantic checks

across cloud resources. Its inputs are open-source Terraform

repositories on Github, and its outputs are a set of hypothe-

sized semantic checks to be further validated.

3.1 Semantic knowledge base
To bootstrap this process, Zodiac first constructs a semantic
knowledge base (KB) that contains “base facts” for building
semantic checks. We draw inspiration from projects that

construct semantic type systems [44] and define three classes
of IaC type information. Each class of information is pro-

grammatically collected from different online sources, in an

automated manner. The KB entries are themselves useful

rules, many of which are not enforced by IaC frameworks.

Table 1 shows some examples.

The first class of Zodiac semantic information are IaC
native constraints. Zodiac extracts this from IaC provider

schema files, which contain precise information about these

properties. Consider the following examples: the IaC re-

source attribute SUBNET.name is usually a required field with

a string type whose value is supplied by the developer. IaC at-

tributes may also be optional (i.e., do not have to be specified);
nested (i.e., list or dict blocks with nested sub-attributes); or

computed (i.e., values only known after deployment).

The second class are provider-specific constraints, which
are regulated by individual cloud providers. For instance,

although subnet.name is a regular string from the perspec-

tive of IaC frameworks, they have special reserved values

for each cloud provider. As another example, only a subnet

named “FWSubnet” can be used to host firewalls; thus, our

KB states that “FWSubnet” is a provider-specific Enum value

instead of a generic string. Similarly, the KB would encode

whether an attribute is an IP CIDR range or a port number, or

whether it has a default value. Zodiac gathers this informa-

tion from the crawled Terraform repositories, which contain

common usage patterns for resource attributes.

The last but most interesting class of semantic information

are resource references in IaC programs. Consider the follow-

ing cases: SUBNET.name = VPC.name, and SUBNET.vpc_name
= VPC.name. At first glance, they look very similar to each

Attribute Class 1 Class 2 Class 3

SUBNET.name required, string [GWSubnet, ...] [VPC.name]

SUBNET.CIDR required, string IPv4; IPv6 N/A

VM.priority optional, string [Regular, Spot] N/A

VM.nic_ids required, list N/A [NIC.id]
SG.rule[i] optional, dict N/A N/A

SG.rule[i].dir required, string [In, Out] N/A

Table 1. Sampled semantic knowledge base entries. Default

in class 2 and legality in class 3 are marked with bold fonts.

other—both are references to an attribute of another resource—

but they have different semantics. The first case simply states

that the subnet and the VPC have the same name, but the

second case specifies a deployment order when constructing

the infrastructure. Specifically, the subnet is attached to the

VPC, so it must be deployed after the VPC. Zodiac constructs
reference semantics from IaC provider registry examples.

3.2 Semantic check specification
When checking software configurations [70], the templates

are typically governing the relation across several attributes

in the same configuration. For instance, EnCore [70] contains

checks such as “uploaded file sizes for a PHP application

should be smaller than upload_max_filesize,” a relation
between two size attributes. However, IaC programs are

“configuration of configurations,” because an overall cloud

infrastructure contains myriad resources (e.g., VMs, NICs,

gateways) in a hierarchical structure. Therefore, IaC semantic

checks must incorporate this structure, not only capturing

checks that govern an individual resource (e.g., a VM), but

also how resources relate to each other (e.g. “if VM connects

to NIC, then they must reside in the same region.”)

We develop a domain-specific assertion language to ad-

dress the topological nature of IaC programs and resource

dependencies, beyond attribute-level checks developed in

existing work. Our observation is IaC semantic checks are as-

sertions over a graph, where nodes represent cloud resources

and edges represent resource-level composition. The primi-

tives of our language likewise articulate common graph pat-

terns and graph-based assertions, categorized in two classes.

We start with topological predicates:
• conn(𝑟1 .in→ 𝑟2.out): Resource 𝑟1 is connected to resource

𝑟2 over a directed edge in the IaC resource graph, via

two attributes 𝑟1.in and 𝑟2.out. Attributes where inter-

resource connections are established are inbound and out-
bound endpoints. For instance, conn(NIC.b.subnet_id→
SUBNET.a.id) means that an inbound endpoint of NIC.b
is connected to an outbound endpoint of SUBNET.a. Each
outbound endpoint (e.g., SUBNET.a.id) could connect to

many inbound endpoints (e.g., 8 different NIC.subnet_id),
while inbound endpoints usage is usually restricted (e.g.,

NIC.subnet_idmust connect to a single SUBNET.id). Con-
nections could also be built among IaC resources with the

same type, e.g., conn(DISK.b.source_id→ DISK.a.id).



/* Check 1: If a virtual machine is connected to a 
network card, then both resources must be located in 
the same cloud region */
let r1: VM, r2: NIC in

Conn(r1.nic_ids->r2,id) => r1.location == r2.location

/* Check 3: If the sku attribute of a virtual machine is
set to “sb1ls”, then it could connect to at most 2
remote managed data disks*/
let r1: VM in

r1.sku == “sb1ls” => Outdegree(r1, DISK) <= 2

/* Check 2: If network cards belong to the same virtual 
machine, then they must be connected to the same VPC */
let r1: VM, r2: VPC, r3: NIC, r4: NIC in

Coconn(r1.nic_ids -> r3.id, r1.nic_ids -> r4.id)
=> Copath(r3 > r2, r4 -> r2)

location:“US-west”
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VM

VM

NIC
VPC

NIC NIC

VM

VPC

NIC NIC

VPC

VM

Disk Disk

sku: “sb1ls”

Conforms to check

VM

Disk Disk

sku: “sb1ls”

Disk

Violates checkConforms to check

location:“US-west”

location:“US-west”

VM

NIC

location:“US-east”

Violates check

Figure 3. Three example semantic checks: on single resources, connectivity patterns, and aggregation properties, respectively.

Paths and direct connections are represented by dashed and solid lines, respectively.

𝑟 ∈ Var, 𝑡 ∈ ResourceType, 𝑣 ∈ Value, 𝛼 ∈ Attribute

𝑐ℎ𝑒𝑐𝑘 ::= let 𝑏𝑖𝑛𝑑 in 𝑒𝑥𝑝1 ⇒ 𝑒𝑥𝑝2 semantic check
𝑏𝑖𝑛𝑑 ::= 𝑟1 : 𝑡1, . . . , 𝑟𝑛 : 𝑡𝑛 bindings
𝑝 ::= 𝑟 .𝛼 endpoint
𝜏 ::= 𝑡 | !𝑡 type specifier
𝑣𝑎𝑙 ::= 𝑣 base value

| 𝑝 endpoint value
| indegree(𝑟 , 𝜏) indegree value
| outdegree(𝑟 , 𝜏) outdegree value

𝑒𝑥𝑝 ::= conn(𝑝1 → 𝑝2) connected expr
| path(𝑟1 → 𝑟2) path expr
| coconn(𝑝1 → 𝑝2, 𝑝3 → 𝑝4) coexist expr
| copath(𝑟1 → 𝑟2, 𝑟3 → 𝑟4) coexist expr
| 𝑜𝑝(𝑣𝑎𝑙1, 𝑣𝑎𝑙2) conditional expr
| !𝑜𝑝(𝑣𝑎𝑙1, 𝑣𝑎𝑙2) negated expr

𝑜𝑝 ::= == | != | <= | >= | < | > comparison
| overlap | contain | length function

Figure 4. The grammar for semantic checks.

• path(𝑟1 → 𝑟2): Resource 𝑟1 is reachable to another re-

source 𝑟2 over a path in the IaC resource graph. This is

recursively defined over a set of conn relations with an un-

specified path. For instance, if VM.c is connected to NIC.b,
which in turn is connected to a subnet entity SUBNET.a,
we derive path(VM.c→ SUBNET.a).
• coconn(𝑟1.in → 𝑟2.out, 𝑟3.in → 𝑟4.out): A correlation

predicate defined over two edges, where 𝑟1, . . . , 𝑟4 are re-

source nodes. It evaluates to truewhen both edges (𝑟1.in→
𝑟2 .out) and (𝑟3 .in→ 𝑟4.out) coexist in the IaC graph—e.g., a

VPC.a has two subnets SUBNET.b and SUBNET.c can be ex-

pressed as coconn(SUBNET.b.vpc_name→ VPC.a.name,
SUBNET.c.vpc_name→ VPC.a.name).
• copath(𝑟1 → 𝑟2, 𝑟3 → 𝑟4): A recursive predicate defined

over two paths that evaluates to true when the two paths

(𝑟1 → 𝑟2) and (𝑟3 → 𝑟4) co-exist in an IaC graph. For in-

stance, copath(NIC.b→ VPC.a, NIC.c→ VPC.a) states
that VPC.a has two NICs configured in the IaC graph.

The above predicates constrain topological patterns of the

IaC resource graph. While we could design additional primi-

tives to model a larger graph region, in practice we find that

these primitives are enough to capture complex interactions

among IaC resources. In addition to these topological primi-

tives, we introduce two counting expressions that capture

aggregation properties of the IaC graph.

• indegree(𝑟, 𝜏): The number of incoming edges, of a spe-

cific type 𝜏 , to resource 𝑟 . For instance, a semantic check

might state that any network card is only attached to one

virtual machine, or indegree(NIC.a, VM) == 1.

• outdegree(𝑟, 𝜏 ): Analogous to the above aggregation prop-
erty, only with a different edge direction.

Semantic checks by examples. Our domain-specific asser-

tion language can describe a wide range of semantic checks

over an IaC graph, and Figure 3 shows three concrete ex-

amples. (i) left: This check states that if a VM is connected

to a NIC, then they must be instantiated in the same cloud

region. As shown in the figure, if the NIC is located in “US-

East” instead of “US-West,” this would lead to a deployment

error. (ii) middle: It states that if two NICs are connected to

the same VM, then they must be contained in the same VPC

resource. (iii) right: Any virtual machine whose sku attribute
is set to sb1ls must have ≤ 2 data disks attached to it—an

aggregation property. The figure also shows example IaC

topologies that conform to or violate each check.

3.3 Semantic check mining
The specification language and semantic KB enable us to

narrow down the search space of IaC semantic checks. We

curated 84 templates based on our grammar via a mixture of

manual effort and automated generation. We first manually

added semantic constraints to each expression (e.g., if the

right side of “==” is an attribute value, then it must be an

Enum type defined in the KB rather than a string) to restrict

the template search space, and automatically combine con-

strained expressions as template conditions and statements

(e.g., combine conn with “==” to generate template for check

1 in Figure 3). We then manually pruned some trivial tem-

plates that add little information. The resulting templates are

reusable across IaC providers and user repositories and this

curation only needs to be done once for each cloud provider.

Association rule mining. The mining algorithm then ex-

amines crawled IaC repositories under the lens of templates,



and instantiate all witnessed checks. Consider a simple check

template that specifies intra-resource attribute relations:

1 for resource r in C:

2 find(r.attr1 == Enum => r.attr2 != null):

For this template, the mining engine iterates through all IaC

programs, identifying the contained resource types where

the Enum value of an attribute is positively associated with

the existence of another. As an example, this template might

find the following check, stating that a spot VM must be

configured with an eviction policy:

1 let r:VM in

2 r.priority == 'Spot' => r.evict_policy != null

For inter-resource templates, the mining engine iterates

through groups of resources to instantiate specific instances:

1 for resource r1, r2 in C:

2 find(Conn(r1.in, r2.out) => r1.attr1 == r2.attr2)

Our running example that constrains VM and NIC locations
would be such an instance. Since these identified checks may

be incorrect or incomplete, next we further refine them.

Statistical filtering. For each identified check, Zodiac com-

putes confidence and lift values for statistical filtering. Con-
fidence is the conditional probability that a given check is

satisfied when it occurs in the dataset, or Confidence(X⇒Y)

= P(Y|X); this metric prefers checks with fewer counterex-

amples. Lift indicates whether the predicate and assertion of

a check are independent or correlated: Lift(X⇒ Y) =

P(Y|X)

P(Y)
,

where a value of one indicates that 𝑋 and 𝑌 are independent.

a value higher than one is stronger evidence that the condi-

tion and statement are positively correlated. Zodiac filters
out semantic checks with low confidence or lift.

Large language model reasoning. Next, we handle a com-

mon phenomenon that quantitative properties, ranges, and

Enum types could lead to incomplete or inaccurate checks.

For example, “VM with sf2 sku can be attached to 2 NICs”

might be witnessed in some repositories, but the actual cloud

requirements could exist in a more general form—e.g., “for

a given VM type, the maximum number of NICs is t.” Since

there are 100+ VM types and they could have 1-64 attached

NICs, such specific information may not be directly observed

in online repositories. We thus leverage LLMs for interpo-

lation to retrieve specific information about potentially am-

biguous check instances. An “interpolation query” might

state, for instance, “for a sf2 sku VM, what is the maximum

number of NICs allowed?” and the model may answer “4”;

Zodiac then includes this refined check.

Zodiac performs a series of prompt engineering steps,

which perform fact-checking on candidate checks, since

LLMs excel at such tasks [37, 49, 50]. Specifically, Zodiac
translates interpolation checks into natural language descrip-

tion, and generates an LLM prompt for few-shot learning—

i.e., providing several pairs of input-output examples, where

an input is an interpolation query, and an output is a concrete

answer (e.g., NIC count). By doing so, Zodiac relies on LLMs

to mitigate data scarcity issues that are an important limi-

tation of configuration mining work. Zodiac requires that
the LLM refer to reliable online sources (e.g. cloud provider

documents) to obtain up-to-date information outside of the

mining dataset. The intuition is that these documents typi-

cally contain detailed usage descriptions (e.g. sku tables [17]);

therefore, LLMs can effectively interpret this context and

produce reliable answers.

4 Validating Cloud IaC Semantic Checks
Next, Zodiac constructs test cases for each hypothesized

check for deployment-based validation. We write the set of

validated checks as 𝑅𝑣 , which initially is empty, and the set

of candidate checks as 𝑅𝑐 , which is yet to be validated. In

each iteration, Zodiac picks a candidate check 𝑐 from 𝑅𝑐 , and

attempts to validate or falsify it. 𝑐 is then removed from 𝑅𝑐
and if it passes validation, will be added to 𝑅𝑣 . This repeats

until 𝑅𝑐 becomes empty. To validate a check 𝑐 , Zodiac finds
an IaC program 𝑡𝑝 that conforms to 𝑐 and validates that 𝑡𝑝
can be deployed successfully—this is called the positive test
case for 𝑐 . It also obtains a negative test case 𝑡𝑛 bymutating 𝑡𝑝
to violate the check 𝑐 , and further confirms that 𝑡𝑛 produces

a deployment error (e.g., IaC plugin errors, cloud service

errors, or inconsistent IaC states). Satisfying both conditions

will validate the check; otherwise, the check is falsified.

4.1 Encoding the mutation search space
For a candidate check 𝑐 , there must exist some program 𝑃

that satisfies this check. Assume for now that we will directly

use 𝑃 as the positive test case 𝑡𝑝 , and our goal is to find a

negative test case 𝑡𝑛 by mutating 𝑡𝑝 .

An example: Consider the following check 𝑐 , which states

that a VPC cannot host more than one gateway:

1 let r1:GW, r2:VPC in

2 path(r1 → r2) => outdegree(r2, GW) == 1

Zodiac iterates through its corpus to identify a program

that declares a VPC with exactly one gateway; this is 𝑡𝑝 . To

construct 𝑡𝑛 , Zodiacmutates this program so that it contains

a VPC with multiple gateways. Note that this may not be

simply adding gateways to this existing VPC, because we

need to ensure that the mutated program does not violate

other checks. Otherwise, 𝑡𝑛 would have violated multiple

checks, and even if it fails to deploy, Zodiac cannot conclude
that 𝑐 is the root cause for the failure. For instance, Zodiac
may realize that there is another check 𝑐′ stating that a subnet
cannot have more than one gateway:

1 let r1:GW, r2:SUBNET in

2 conn(r1.subnet_id, r2.id) => outdegree(r2, GW) == 1

In this case, when mutating the program, Zodiac will add
a new gateway as well as a new subnet, so that 𝑐′ will not
be violated. Recursively, this requires Zodiac to examine

additional checks when adding the subnet—e.g., a third check



𝑐′′ stating that subnets under the same VPC cannot have

overlapping CIDR ranges:

1 let r1:SUBNET, r2:SUBNET, r3:VPC in

2 coconn(r1.subnet_id → r3.id, r2.subnet_id → r3.id)

3 => !overlap(r1.CIDR, r2.CIDR)

Our goal is to ensure that only 𝑐 is violated for precise testing.

Solver-aided mutation. We encode these constraints as

SMT formulas so that our 𝑡𝑛 violates a check 𝑐 , but conforms

to all other checks in 𝑅𝑣 and 𝑅𝑐 as well as base facts in our se-

mantic KB. Given a positive test case 𝑡𝑝 , Zodiac first encodes
potential mutation strategies by instrumenting its attributes

and connections with symbolic values, and asks an SMT

solver to identify concrete assignments.

Encoding mutations. Consider the following check, which

states that a sf2 sku VM cannot host more than 2 NICs:

1 let r:VM in

2 r.sku == 'sf2' => indegree(r, NIC) <= 2

Suppose 𝑡𝑝 contains a sf2 VM.a with two network interfaces

NIC.d and NIC.e, then Zodiac would create 𝑡𝑛 by adding a

third NIC and attaching it to VM.a.nic_ids. It converts part
of 𝑡𝑝 into symbolic variables denoted by ?? as shown below:

1 /* instrumented existing resources */

2 resource VPC b, SUBNET c, NIC d, e ...

3 resource VM a {

4 sku = "sf2"; location = "eastus";

5 nic_ids = [NIC.d.id, NIC.e.id, ??]}

6 /* instrumented virtual resources */

7 resource NIC v0 {

8 location = ??; subnet_id = ??}

9 resource VPC v1, SUBNET v2

A symbolic endpoint is put into VM.a.nic_ids as a third NIC
that would violate the candidate check. The actual NIC is

NIC.v0, also with symbolic values. Zodiac also adds VPC.v1
and SUBNET.v2, as the new NIC might require its own VPC

or subnet; these additional resources may be instantiated or

skipped depending on the SMT solving results.

Encoding requirements. Next, Zodiac encodes the semantic

KB. For example, it may assert that all newly added connec-

tions must be legal (e.g. NIC.v0.subnet_id cannot directly

connect to VPC.a.id)—e.g., based on Class 3 semantic KB

entries. Zodiac also encodes that if a new resource is added,

all its required endpoints must be correctly connected to

existing resources, based on Class 1 semantic KB entries.

As an example, if a new NIC.v0 is connected to a VM.a at

its outbound endpoint, then it must be connected to some

subnet at its inbound endpoint. Likewise, Zodiac asserts that
NIC.v0.location must be a valid cloud region name based

on the semantic KB. Zodiac then encodes checks in 𝑅𝑐 and

𝑅𝑣 as SMT constraints. For instance, to assert a check “VM

and its NIC must be in the same location”, the solver will

make sure that the assigned NIC.v0.location is equal to

VM.a.location, which in this case is eastus. Solving all

constraints above thus results in the following 𝑡𝑛 :

1 /* SMT generated negative test case */

2 resource VPC b, SUBNET c, NIC d, e ...

3 resource VM a {

4 sku = "sf2"; location = "eastus";

5 nic_ids = [NIC.d.id, NIC.e.id, NIC.v0.id]}

6 resource NIC v0 {

7 location = "eastus"; subnet_id = SUBNET.c.id}

Immutable resources. IaC frameworks comprise an evolv-

ing ecosystem of service providers, so Zodiac may find re-

sources that it does not yet support (e.g., the KB does not con-

tain relevant information). Zodiac leaves such “unattended”

resources unchanged when performing mutations since it

does not know what valid mutations look like.

Minimizing changes. Finally, Zodiac minimizes the differ-

ence between 𝑡𝑛 and 𝑡𝑝 by adding SMT optimization objec-

tives. We require that attribute values and topology con-

nections should remain unchanged to the extent possible,

preferring original values and connections used in 𝑡𝑝 . We

also require that value mutations should minimize the dis-

tance from the original values—e.g., mutating a CIDR value

to its adjacent range with the same prefix length). The final

𝑡𝑛 is expected to compile successfully in the IaC framework

but produce a deployment failure.

Pruning IaC programs. Thus far, we have assumed that 𝑡𝑝
is some existing IaC program 𝑃 in our corpus. In practice, Zo-
diac simplifies 𝑃 by removing two types of resources before

generating 𝑡𝑝 and 𝑡𝑛 . First, Zodiac prunes away resources

that are not reachable from resources that trigger the can-

didate check 𝑐 , so that the resulting programs have fewer

resources. This not only leads to smaller SMT encodings

but also lower cloud deployment cost. For example, when

validating a check that only regulates VM attributes, Zo-
diac will remove gateways and peerings from 𝑃 and only

preserve the minimal set of resources (e.g., a single VM). In

addition to unreachable resources, Zodiac also removes child

resources that are only deployed after the candidate check

takes effect—e.g., the disk association of a VM. This pruning

is achieved by identifying a single instance that conforms to

𝑐 in the original program—i.e., a set of resources that witness

a check—and keeping only this instance and its ancestor

resources that are required for deploying this instance (e.g.,

a VM alongside its NIC, subnet and VPC). We call this a

minimal deployable configuration (MDC) which is our 𝑡𝑝 .

4.2 Scheduling check validation
Next, we discuss how to schedule test cases and deploy them

into the cloud to validate the corresponding semantic checks.

The most naïve solution would be to test a randomly chosen

candidate check against a randomly chosen program, then

repeat this process until all checks are validated or falsified.

However, in reality, it is not always possible to generate

negative test cases for each candidate check. A check may

be “untestable” because any attempts to mutate its attributes

or topology to violate a candidate check always has the side



effect of violating other checks in 𝑅𝑐 and 𝑅𝑣 . As an example,

consider three candidate checks below, assuming they are

the only checks in 𝑅𝑐—that is, 𝑅𝑣 is empty:

1 /* Candidate check (1) */

2 let r1:NIC, r2:VPC in

3 path(r1 → r2) => r1.location == r2.location

4 /* Candidate check (2) */

5 let r1:VM, r2:NIC in

6 path(r1 → r2) => r1.location == r2.location

7 /* Candidate check (3) */

8 let r1:VM, r2:VPC in

9 path(r1 → r2) => r1.location == r2.location

Consider the case where we start by validating check (2),

which asserts that the VM and NIC locations must be the

same. If we mutate the location of NIC, then (1) and (2) will

be violated simultaneously, and if we mutate the location of

VM, then (2) and (3) will be violated at the same time. These

check conflicts could lead to a stalemate.

Validation scheduling algorithm. Hence, the ordering

of testing is important, and Figure 5 shows our scheduling

algorithm to resolve check conflicts that may occur. At a high

level, the algorithm iterates (�O1) over 𝑅𝑐 until it becomes

empty (line 5). Each iteration is further composed of a false
positive removal pass and a true positive validation pass. The

intuition is that removing false positives could make it easier

to validate true positives (because fewer candidate checks

will be involved), and the same applies in reverse—validating

true positives make it easier to remove more false positives,

as validated checks become part of the ground truth.

In the false positive removal pass (lines 6-14), a candidate

check is classified as false positive if one of the following

cases occur: 1) no negative test case can be generated because

the solver always returns UNSAT due to conflicts with checks

in𝑅𝑣 (line 11); 2) a negative test case exists but does not result

in deployment failures (line 13). When generating negative

test cases for false positive removal passes, the algorithm

ensures that the test cases conform with all the checks in 𝑅𝑣 ,

but allows other checks in 𝑅𝑐 to be violated. This is because

𝑅𝑐 has not yet been validated and its violation should not

stop Zodiac from making progress. In fact, if a deployment

succeeds for a test case containing multiple 𝑅𝑐 violations,

then it means all violated checks are false positives. As shown

on line 10, checks in 𝑅𝑣 are encoded as hard constraints

in the SMT solver, while checks in 𝑅𝑐 are encoded as soft

constraints through SMT minimization primitives (�O2).

In the true positive validation pass (lines 17-24), if a neg-

ative test case fails to deploy, we further examine whether

1) it only has one check violation (line 21), or 2) it violates

multiple checks simultaneously (i.e., 𝑠𝑖𝑧𝑒(𝑅𝑛) > 1), but these

checks are indistinguishable from each other across all their

test cases (line 23). If either is true, Zodiac places such target

check(s) into𝑅𝑣 andmarks them as validated.We calculate in-

distinguishable check groups𝐺𝑖 (�O3) before the beginning

of each true positive validation pass (line 16). The algorithm

1: function ValidationScheduling(𝑅𝑐 , 𝑅𝑣 , 𝑃 )

2: // Calculate evaluation partial order among checks

3: EvalPartialOrder(𝑅𝑐 ) � O4

4: // Iterate until candidate check set becomes empty

5: while 𝑅𝑐 != ∅ do � O1

6: for 𝑐 in 𝑅𝑐 do // False positive removal pass
7: // Find positive test case in user repos

8: 𝑡𝑝 ← FindCheckInstance(𝑐 , 𝑃 )

9: // Calculate negative test case and its violations

10: 𝑡𝑛 , 𝑅𝑛 ← SMTMinimize(𝑡𝑝 ) � O2

11: if 𝑡𝑛 == ∅ then
12: 𝑅𝑐 ← 𝑅𝑐 - {𝑐}
13: else if Deployment(𝑡𝑛) == Success then
14: 𝑅𝑐 ← 𝑅𝑐 - {𝑐}
15: // Find groups of indistinguishable checks

16: 𝐺𝑖 ← GroupIndistinct(𝑅𝑐 ) � O3

17: for 𝑐 in 𝑅𝑐 do // True positive validation pass
18: 𝑡𝑝 ← FindCheckInstance(𝑐 , 𝑃 )

19: 𝑡𝑛 , 𝑅𝑛 ← SMTMinimize(𝑡𝑝 )

20: if Deployment(𝑡𝑛) == Failure then
21: if 𝑠𝑖𝑧𝑒(𝑅𝑛) == 1 then
22: 𝑅𝑐 ← 𝑅𝑐 - {𝑐}; 𝑅𝑣 ← 𝑅𝑣 ∪ {𝑐}
23: else if 𝑅𝑛 in 𝐺𝑖 then
24: 𝑅𝑐 ← 𝑅𝑐 - {𝑐}; 𝑅𝑣 ← 𝑅𝑣 ∪ {𝑐}

Figure 5. End-to-end validation scheduling algorithm.

comprises two steps. First, it generates a negative test case

𝑡𝑛 for each check 𝑐 in 𝑅𝑐 . If the test case for 𝑐 also violates

another check 𝑐′ and vice versa, 𝑐 and 𝑐′ are put into a candi-
date group. Second, for each candidate group, the algorithm

searches through each available positive test case 𝑡𝑝 to gen-

erate a 𝑡𝑛 that violates one of those checks yet conforms with

all other checks in the same group. If this process fails across

all 𝑡𝑝 with the solver reporting UNSAT, then they are indeed

indistinguishable from each other. For instance, if Zodiac
cannot find a 𝑡𝑛 that only violates one of the checks in (2)

and (3), then they are marked as indistinguishable.

In theory, the scheduler could run into a “reasoning loop”

where all negative test cases violate multiple semantic checks

and fail during deployment. This situation could again lead

to a stalemate. In practice, the hierarchical structure of IaC

programs helps alleviate this problem. Consider the three

candidate checks earlier in this subsection, and assume they

are all true positives. At first glance, it seems they all have

check conflicts with each other. However, since VM only

gets deployed after its NIC, we may construct a test case

that contains a NIC but does not have a VM, so the solver

can ignore check (2) and (3) when evaluating (1). This or-

dering between semantic checks forms an evaluation partial
order, which naturally resolves reasoning loops among inter-

resource semantic checks. This ordering also reduces the

amount of iterations, as interference among checks with

different partial orders are minimized. As shown in line 3,

the scheduler reorders all hypothesized checks so that those

with higher partial order will always be evaluated first (�O4).

Although the above approach does not resolve intra-resource



Semantic check templates Example mined by Zodiac Category

A.attr1 == Enum⇒ A.attr2 == Enum “If GW.sku is Basic, GW.active_active is False” intra-resource

A.attr1 != A.attr2⇒ A.attr3 != A.attr4 “Different direction SG rules have diff. priority” intra-resource

copath(A→ B,A→ C)⇒ !overlap(B.attr1, C.attr2) “Two tunneled VPCs have exclusive IP CIDR” inter w/o agg

conn(A.in1 → B.out1)⇒ B.attr1 == Enum “IP associated with NAT must use standard sku” inter w/o agg

conn(A.in1 → B.out1)⇒ coconn(A.in2 → C.out2, B.in3 → C.out3) “Route table and its routes must in same VPC” inter w/o agg

coconn(A.in1 → B.out1,A.in2 → C.out2)⇒ B.attr1 != C.attr2 “VM os_disk and data disk have different name” inter w/o agg

conn(A.in1 → B.out1)⇒ outdegree(B, 𝜏) == 1 “A NIC could only be attached to one VM” inter w/ agg

A.attr1 == Enum⇒ indegree(A, 𝜏) == 0 “VPC2VPC type tunnels can’t use HA GW ” inter w/ agg

conn(A.in1 → B.out1)⇒ outdegree(B, 𝜏) == 0 “No other resource can share subnet with GW” inter w/ agg

A.attr1 == Enum⇒ outdegree(A, 𝜏) == int “Basic sku GW can have at most 10 tunnels” interpolation

A.attr1 == Enum⇒ indegree(A, 𝜏) == int “sf4 sku VM can be attached to at most 4 NICs” interpolation

A.attr1 == Enum⇒ A.attr2 != Enum “Premium sku SA prohibits GZRS redundancy” interpolation

Table 2. Some representative check formats Zodiac has currently validated. From top to bottom, they are intra-resource

checks, inter-resource checks without and with aggregation, and checks enhanced by LLM interpolation.

reasoning loops, we note that the latter does not appear in

our semantic check templates.

Validation examples. Next, we discuss how the schedul-

ing algorithm works in action, by observing how it handles

different scenarios around the motivating candidate checks.

I. All checks are true positives. The validation scheduling

algorithm orders checks by their partial order, so check (1)

will be validated first without any conflicts. Check (2) and

(3) are then deemed as a group of indistinguishable checks

because they are always conformed or violated at the same

time. The true positive validation pass should be able to

resolve this case, and put both checks into 𝑅𝑣 .

II. Some checks are false positives. Suppose check (2) is the

only true positive. In this case, check (1) will be evaluated

first according to partial order, and get removed as a false

positive. Check (2) and (3) in this case do not have conflicts

any more, e.g., check (2) could mutate NIC and check (3)

could mutate VPC, without triggering other violations. They

can thus be easily resolved during upcoming passes.

5 Evaluation
Prototype. We have implemented Zodiac [31] in ∼11,000
lines of code in Python: ∼3,100 for data processing and se-

mantic KB construction, ∼4,100 for the mining engine, and

∼3,800 for the validation engine. The KB construction and

mining steps are implemented using Rego [18] queries, and

the test case generation uses the Z3 SMT solver. Interpolation

queries are performed using GPT-4.

Corpus and pipeline. We applied Zodiac to 52 popular re-

source types in Microsoft Azure, crawling 26,000 IaC reposi-

tories from GitHub. This yielded ∼6,000 projects with ∼3.8
million lines of Terraform code after preprocessing. We then

compiled these IaC programs into deployment plans, which

serves as the basis for both Zodiac mining and validation

steps. The mining phase completed in under 2 hours. We fur-

ther filtered out projects incompatible with our SMT solver

implementation and fed the remaining ∼4200 projects to the

validation phase, which finished within 3 days. Our evalua-

tion focuses on several key research questions:

• How effective isZodiac at discovering semantic checks,

and what are the implications of these checks?

• How effective is Zodiac compared to baseline systems?

• How effective are the design techniques in the mining

and validation phases in discovering semantic checks?

• How effective are Zodiac checks at finding real bugs?

5.1 Discovered semantic checks
The most important metric is the quantity and quality of the

semantic checks that Zodiac is able to discover. In the mining

phase, Zodiac discovered ∼9,800 hypothesized checks, and

filtered out ∼5,600 based on confidence and lift. The valida-

tion phase produced 510 validated checks (indistinguishable

checks are counted as one). We present several examples

below, and Table 2 summarizes the key templates.

(1) Premium storage account (SA) users might expect ad-

vanced replication support [6]—for instance, geo-zone re-

dundancy (GZRS) which provides both datacenter (zone) and

secondary region (geo) failovers. However, surprisingly, Zo-
diac finds that GZRS is not available to Premium but only

Standard SAs. This is because Premium is in fact optimized

for latency requirements instead of failover.

1 let r:SA in

2 r.sku == 'Premium' => r.replica != 'GZRS'

(2) VMs have an os_disk attribute, which is the storage

for the OS image, and it also has “data disk” resource type

for the main storage. At first glance, they do not appear

correlated, but Zodiac finds an inter-resource check stating

that their names must be different. Our study reveals that

although the IaC program uses different names for these

disks, at the Azure level both are instantiated in the same

way and cannot have naming conflicts.

1 let r1:VM, r2:DISK, r3:ATTACH in

2 coconn(r3.vm_id → r1.id, r3.disk_id → r2.id) =>

3 r1.os_disk != r2.name

(3) We discussed earlier that Azure has reserved subnets—

e.g., only “GWSubnet” can host a gateway GW. Zodiac is
able to further find that such subnets are also quite exclusive.



Error Phase Consequence Example mined by Zodiac Share

Plugin checks Target resource fails before requests are sent to providers. “Standard IP use static allocation” 9.00%

Pre-deploy sync Target resource fails as provider claims “already exists”. “Disks have different names” 5.84%

Sending request Target resource fails during initial creation attempts. “Peering VPC CIDR can’t overlap” 74.94 %

Polling request Target resource fails during async. polling attempts. “FW subnet can’t use delegation” 7.79%

Post-deploy sync Target resource completes but IaC/cloud states are inconsistent. “subnet only attach to 1 route table” 2.43%

Table 3. IaC programs that violate Zodiac semantic checks could produce several classes of deployment errors.

If a subnet is hosting a GW, then it cannot host other types

of resources (e.g. a NIC):

1 let r1:GW, r2:SUBNET, in

2 conn(r1.subnet_id → r2.id) => outdegree(r2, !GW) == 0

Deployment failure scenarios. Table 3 further shows the
failure scenarios due to semantic check violations. After

compilation, the IaC program will go through several steps.

First, IaC frameworks will perform a set of plugin checks out-

side the core compiler—using checks from individual plugin

providers. Violations against these checks account for 9.00%

of deployment failures within Zodiac test cases. This result
indicates that some Zodiac checks are already considered by

today’s IaC plugin developers. However, these plugin checks

are not static analyses; they are performed as resources are

being deployed—recall that the core IaC compiler does not

expose proper interfaces for implementing such semantic

checks. As a result, deployment will proceed normally at

first until a violation halts or disrupts the infrastructure.

After plugin checks, the IaC framework queries the cur-

rent cloud state and synchronizes that state with the IaC

program to be deployed. 5.84% of the failures occur at this

step, typically due to resources with conflicting identifiers.

If this passes, the IaC framework sends creation requests to

cloud providers, which initiates the actual deployment phase.

Most test cases (74.94%) fail here for myriad reasons, such as

invalid attributes, conflicting CIDR ranges, “resources not

found” errors, invalid connections, “features not supported

for sku.” If no errors occur here, then the IaC framework

initiates a polling phase to retrieve the eventual cloud state

asynchrously, on resources that are slow to create (e.g. FW);

7.79% failures happen at this step. Finally, the IaC frame-

work performs another round of synchronization on the

successfully-deployed resources to determine whether the

deployed states are as expected, and this captures the re-

maining 2.43% errors that are silent across the deployment

attempt, typically because some created resources are over-

ridden by subsequent ones.

Impact of failures.We now discuss the impact of deploy-

ment failures when an IaC program violates Zodiac semantic

checks, denoting the “blast radius” of a check as the num-

ber of resource types that could be affected if that check is

violated. Consider an example check “two tunnelled VPCs

cannot have overlapping CIDR ranges.” In this case, before

the tunnel is created, the two VPCs could be deployed suc-

cessfully, along with their child resources. Later on when

the tunnel fails to deploy, users need to change VPC CIDR
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Figure 6. Violations against Zodiac semantic checks could

lead to halted deployments or state rollback. Blast radius

refers to the upper bound of impacted resource types.

ranges for a fix. Since most direct changes to VPC-level CIDR

ranges are not allowed by Azure, we would need to recreate

the VPCs as well as all their child resources from scratch.

In other words, these resources (36 types among 52 that

Zodiac covers) are impacted by the rollback radius due to
deployment failure.

As Figure 6 shows, each semantic check violation would

impact ∼7 resource types that requires rollback actions in

the worst case, which is the upper bound of resource types

that must be recreated to fix a deployment. Another ∼6 are
within what we call the halting radius, because they could

not be deployed at all before the violation is resolved. The

blast radius changes across semantic check categories—e.g.,

intra-resource checks have a smaller rollback blast radius

because only the failed resource itself needs to be changed;

inter-resource checks (without aggregation) have the largest

blast radius (both halting and rollback), as the graph patterns

are more complex and have more resource types.

5.2 Zodiac vs. existing tools
We compare Zodiac against several IaC checkers. First, the

Terraform native validate command matches user IaC pro-

grams against provider schema JSON files, which contain

basic syntax inspections and simple semantic checks (e.g.

conflicting attributes). Furthermore, there are also several

security checkers (TFSec, Checkov, TFComp, Regula) that

are developed outside Terraform as ancillary tools. They

could capture security incidents such as “Password authenti-

cation is insecure thus should not be used in VM,” or “Public

internet access to SSH ports is insecure thus should be dis-

abled in SG.” These tools typically operate on compiled IaC

deployment files. TFLint is another popular static checker

that captures invalid Enum values in resource attributes, and

raises warnings when IaC programs deviate from best prac-

tices (e.g. whether single-line comments are used). TFLint

does not reason across different attributes or resources, and

is thus incapable of handling any checks mined by Zodiac.



Tool Spec Phase Prevalence Precision

Native JSON Config 11.74% 36.67%

TFSec JSON Plan 11.54% - - -

Checkov YAML Plan 66.34% - - -

TFComp BDD Plan 3.91% - - -

Regula OPA Plan 13.31% - - -

TFLint
∗

HCL Config - - - - - -

Table 4. Semantic checks found by Zodiac are not present
in other IaC static analysis tools. Prevalence denotes the

percentage of Zodiac test cases marked as invalid/insecure,

precision evaluates their overlapping with Zodiac checks.
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Figure 7. Zodiac global knowledge base and filtering meth-

ods help with constraining the amount of candidate checks.

Table 4 shows the comparison. We randomly generated

∼500 negative test cases for validated Zodiac checks as in-
puts to all checkers, and report their prevalence (percentage

of inputs with reported issues) and precision (percentage of

actual deployment problems among reported issues). Our

first observation is that most sampled test cases could pass

IaC native validation without triggering any errors: only

11.74% of them encountered compilation failures. It is worth

noting that most of these failures are not violations against

semantic checks, but rather generic syntax problems in sam-

pled test cases. Only 36.66% among them (4.00% of total test

cases) point to actual semantic violations, typically due to

missing attributes in a resource block (e.g. neither password

nor ssh_key is declared in a VM).

While ancillary security checkers (e.g. Checkov) do not

aim at capturing deployment failures (shown as ‘- - -’), they

actually reported some problems in our test cases for two rea-

sons. First, the original IaC programs in our corpus could be

insecure in the first place, triggering checker reports. Second,

the pruning optimization of Zodiac removes resource that

are not directly related to deployment success. For instance,

security checkers might suggest a subnet should have a SG

attached, but Zodiacwill often remove SG during testing. We

were unable to compare against TFLint directly because it

only works against the HCL format, while Zodiac test cases
support configurations and planning files in JSON.

5.3 Effectiveness of the mining phase
Zodiac applied a set of domain-specific techniques for seman-

tic check mining and filtering, to capture more high quality

rules while discarding obvious false positives early on. In

Check encoding strategy TP Num. FP Num.

Ignoring non-target checks 4.80 11.76

Zodiac (consider other checks) 0 4.04

Config mutation strategy Attr. Num. Topo. Num.

No constraints on changes 11.05 3.20

Zodiac (minimizing changes) 2.87 2.90

Table 5. Zodiac test case generation needs to consider inter-

ference from other checks, and minimize mutation impact.

Figure 7(a), we demonstrate how Zodiac’s knowledge base
helps reduce the total number of candidate checks. The x-

axis shows resource types with varying number of attributes.

Simpler resource types (e.g., peering) may have fewer than

10 attributes, whereas complex ones (e.g., VM) have more

than 80. The y-axis denotes number of mined intra-resource

checks per resource type, while each group of columns shows

the result w/ and w/o KB involvement respectively. For both

cases, the number of mined checks grows as number of at-

tributes increases, but w/ KB reduces the number of mined

checks by several orders of magnitudes. For instance, intra-

resource check mining w/o KB generated more than 70,000

mined checks, which is almost 35 times higher than those

generated by Zodiac.
Figure 7(b) shows the number of checks removed by statis-

tical filtering (i.e., confidence and lift), as well as the number

of checks completed by LLM-based interpolation. The confi-

dence filter removed 38.3% of mined checks, which means

that those checks are not always respected in existing user

repositories. The lift filter further removed an additional

16.2% of mined checks, indicating that their conditions and

statements did not have a strong correlation.

We further leveraged LLMs to test the filtering effective-

ness using a randomly sampled set of mined checks. Out of

these 400 checks, ∼34% pass the statistical filtering and the

rest were discarded by confidence and lift. We asked the LLM

to assess whether these checks are true positives. For the

checks that have passed statistical filtering, the LLM reports

18.80% as true positives; for checks that are filtered out statis-

tically, this drops to 4.53%. Although LLMs may mistakes in

these assessments, this difference is substantial and suggests

that confidence and lift are effective in removing low-quality

checks. Finally, the interpolation pass was able to generate

more than 800 checks initially, 40% of which were supported

by the LLM and added to the candidate rule list (shown as

llm-found). The rest were discarded (llm-remove).

5.4 Effectiveness of the validation phase
Zodiac’s validation pipeline is carefully designed to elimi-

nate false positives. In Table 5, we present our major design

decisions on negative test case generation. The top half of

the table shows that considering all checks in 𝑅𝑣 and 𝑅𝑐
helps find failure root causes. If we only test a single candi-

date check, without considering 𝑅𝑣 and 𝑅𝑐 , this results in an
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Figure 8. All scheduling components must be used for effective validation.

average of 4.80 true positive violations and 11.76 false posi-

tive violations when generating negative test cases for each

program. This makes it difficult for Zodiac to draw defini-

tive conclusions about the validity of a check. Our solution,

which considers all known checks, ensures that no violations

against 𝑅𝑣 occur, while minimizing violations towards 𝑅𝑐 .

The bottom half shows that encoding attribute and topology

changes as minimization constraints helps with negative

test case generation. Without these constraints, the average

number of attribute changes in each negative test case is as

high as 11.05, reducing the reliability of validation results.

Figure 8 shows the importance of our validation schedul-

ing algorithm. Figure 8(a) demonstrates the overall conver-

gence process of the validation phase. False positive removal

passes gradually mark checks as false positives, while true

positive validation passes put them into 𝑅𝑣 . After six itera-

tions, the candidate rule set 𝑅𝑐 becomes empty, ending the

validation process. Figure 8(b) shows the scheduling process

without handling indistinguishable checks. The validation

engine converges to a stage where no new true or false posi-

tives can be found, yet 𝑅𝑐 is still not empty. Figure 8(c) breaks

down the false positive removal passes. In the beginning,

most false positives are removed because their negative test

cases could not trigger failures (shown by the ‘Deployable’

curve). As more checks are evaluated, the focus of removal

shifts to cases where target checks do not have negative test

cases due to conflicts with checks in 𝑅𝑣 (shown by the ‘Un-

satisfiable’ curve). Figure 8(d) breaks down the true positive

validation passes. It shows the importance of handling indis-

tinguishable checks, as almost half of the true positives are

validated with more than 1 check violation in negative test

cases (shown by the ‘Multiple’ curve), i.e., they are within

certain indistinguishable check groups.

Finally, Table 6 demonstrates how the pruning methods

used by Zodiac helps with minimizing test cases. It lists sev-

eral example resource types and their average positive test

case size—with MDC-based pruning (pruned) and without

pruning (orig.). MDC helps remove both attended resources

(att.) and unattended resources (unatt.), reducing the size of

test cases by a magnitude of 3X to 9X. Most checks mined by

Zodiac could be evaluated with fewer than 10 resources, ex-

cept interpolation checks that require aggregation operators.

This ensures the SMT solving time is typically within a sec-

ond on a standard server, and cloud deployment cost per test

Type pruned/att. orig./att. pruned/unatt. orig./unatt.

FW 6.50 17.88 1.00 5.00

SG 2.92 18.33 0.42 5.58

GW 5.60 18.33 0.40 5.58

LB 3.92 22.50 1.08 9.92

RT 4.57 41.57 1.14 8.71

Table 6. Zodiac needs pruning during the scheduling phase

to reduce overhead and avoid unattended resource types.

is under a dollar, both affordable even for individual develop-

ers. It is also evident that IaC programs typically come with

multiple unattended resources (orig./unatt.), which could

post threats to validity if not mitigated by MDC (though not

completely removed, shown as pruned/unatt.).

5.5 Real world misconfigurations
To evaluate Zodiac’s capability of detecting real world se-

mantic check violations, we applied our checks to inspect

all repositories used in the validation phase. Overall, Zodiac
detected misconfigurations in 85 of these repositories, ac-

counting for 2.0% of our dataset. As another test, wemanually

encoded the top-3 checks with the most amount of violations

into Github API search queries [8–10]. Scanning through

Github, these three checks identified 200+ other repositories

(outside our dataset) that violate these constraints.

Moreover, we were able to identify four incorrect usage ex-

amples within the Terraform Azure provider documentation.

We have submitted bug reports and suggested fixes as Github

issues [13–16] to the Azure provider plugin developers, who

responded quickly and fixed all of them. As an example, one

such buggy usage [26] consists of the following resources:

1 /* Associate NIC with APPGW address pool */

2 resource VPC a, SUBNET b, c ...

3 /* Violation 1: IP of APPGW must have Standard sku */

4 resource IP d { sku = "Basic"; allocation = "Dynamic"}

5 resource APPGW f { ip_id = IP.d.id;

6 subnet_id = SUBNET.b.id}

7 /* Violation 2: The subnet of APPGW is exclusive */

8 resource NIC e { subnet_id = SUBNET.b.id }

9 resource Association g ...

This program passes IaC validation and compilation in Ter-

raform, but violates two Zodiac checks simultaneously.

Violation 1: Azure requires that if an IP address resource

is used for an APPGW (application gateway), then it has to

use Standard sku rather than Basic:



1 let r1:APPGW, r2:IP, in

2 conn(r1.subnet_id → r2.id) => r2.sku == 'Standard'

A naïve fix seems to be changing the sku value from Basic
to Standard, but in fact, doing so would result in another

semantic check violation within the IP resource:

1 let r:IP in

2 r.allocation == 'Dynamic' => r.sku == 'Basic'

The check states that if IP resource does not use Basic SKU,

it cannot apply Dynamic allocation. A complete fix must

therefore also change the allocation from Dynamic to Static.
Violation 2: A second semantic violation arises from incor-

rect subnet usage. APPGW, like GWmentioned in Section 5.1,

requires exclusive usage of its subnet. However, the NIC in

this program shares the same subnet.bwith APPGW, which

goes against cloud requirements. It is also worth noting that

the developers of the usage example did declare two distinct

subnets (subnet.b, subnet.c) earlier in the program, but

later code only made use of one subnet. To fix this, we could

instead correct the NIC to the other subnet.c. This exam-

ple shows that mistakes could easily occur even for expert

Terraform programmers.

5.6 False positives
Like other configuration mining projects, Zodiac is subject
to an open-world assumption [19]—there may be invariants

that the mining phase cannot find, either because they do

not appear in the crawled dataset, or because they go beyond

our curated mining templates. As such, the validation phase

cannot offer soundness guarantees. Indeed, we have found

checks that align with Zodiac’s definition of true positives

(i.e. 𝑡𝑝 could be deployed while corresponding 𝑡𝑛 fail to de-

ploy), but are in fact false positives. This is because, when

the mutated test case 𝑡𝑛 fails to deploy, the root cause may

lie in some other checks that Zodiac is not aware of, instead
of the candidate check that is being validated. As a concrete

example, Zodiac’s validation engine believes that a check

stating “if a VM is reachable to a VPC, then it must specify a

source image reference block” is correct:

1 let r1:VM, r2:VPC, in

2 path(r1 → r2) => r1.source_image_ref != null

However, this rule is not a complete semantic check. In fact, if

VM.create attribute is set to Image, then the above statement

is indeed true. Instead, if the create option is set to Attach,
then VM can be deployed without a source image reference:

1 let r:VM in

2 r.source_image_ref == null => r.create == 'Attach'

The false positive occurred because cloud users rarely use the

Attach option, to a point that Image appears to be the only

available create option within our dataset. Zodiac henceforth
failed to unearth the correct check regarding Attach. Conse-
quently, Zodiac cannot generate a meaningful negative test

case to falsify the incorrect claim.

Initially, our validation engine outputs 539 semantic checks,

but 29 of them have been identified as false positives, ac-

counting for 5.4% of all validated checks. Among them, 17

false positives (3.1%) are identified through an automated

counterexample testing pass. Concretely, Zodiac looks for
additional repositories that violate each check and observes

whether they actually fail to deploy. If some of them are

in fact deployable (i.e., counterexamples of the check exist),

then Zodiacmarks the check as false positive. The remaining

12 (2.2%), on the other hand, are identified by manually exam-

ining all checks. Specifically, we cross-reference each check

with Terraform and Azure documentations. If a check is rec-

ognized as a possible false positive, then we manually craft

test cases that violate the check and observe deployability.

6 Discussion
Different IaC frameworks.While our current prototype

targets Terraform, there exist several other IaC frameworks,

such as AWS CDK [1], CloudFormation [2], CDKTF [12],

and Pulumi [22], and Bicep [3]. (i) Declarative vs. imperative.
frameworks like Pulumi use imperative code (e.g., Python

and TypeScript) for configuring resources, in contrast to the

declarative approach in Terraform. In Terraform, the intra-

and inter-resource relations are directly encoded into the

configuration, whereas an imperative IaC program might

require more advanced software analysis techniques, e.g., for

mining semantic checks and mutating programs to obtain

negative test cases. (ii) Framework architectures. IaC frame-

works also differ in their software architectures. For instance,

Terraform has a core compiler that is cloud-agnostic, with

plugin extensions that can be integrated by individual cloud

providers. AWS CDK, on the other hand, only targets Ama-

zon’s cloud; it does not expose similar interfaces, and its

core compiler might have a smaller semantic gap since it is

developed by the cloud provider itself. Extending Zodiac to
other IaC platforms, therefore, may require additional man-

ual curation of the semantic KB, check templates, and new

program analysis techniques for deployment-based testing.

One potential roadmap is to analyze the IaC deployment

plans instead of the original IaC programs. Typically, an IaC

program is first compiled into a JSON-like format before the

deployment phase, and across IaC frameworks their deploy-

ment plans have similar formats which could serve as the

common denominator. For instance, CDKTF and Terraform

share the same JSON plan format; AWS CDK compiles into

CloudFormation [2] which also supports JSON. Some of Zo-
diac’s components (e.g., the mining engine) already operate

on the JSON deployment plans, which should be reusable in

specific cases. We leave this exploration to future work.

Handling IaC/cloud-level changes. Cloud services may

introduce new resources or modify existing ones, so Zodiac
needs to periodically update its semantic checks by rerun-

ning the automated mining/validation pipeline. Zodiac may

also need to incorporate new check templates over time, and



constructing additional templates is currently a manual pro-

cess. However, the templates only comprise 400 LoC for our

current version, and we expect that template changes would

occur more infrequently than service changes.

Different cloud providers.Our prototype targetsMicrosoft

Azure, but many other cloud providers use IaC-style manage-

ment. To generalize Zodiac’s techniques to other providers

(e.g., AWS, GCP), assuming that IaC programs are written

against Terraform, themining and validation pipelines should

be reusable. We would need additional effort to curate check

templates and KB entries for the new cloud provider. Recall

that for Azure, we manually curated the templates which

account for about 400 lines of code; for AWS and GCP, we

expect a similar amount of manual work and a similar tem-

plate library size. Beyond the three major providers, addi-

tional challenges will arise if Zodiac needs to support “low-

resource” providers (i.e., smaller clouds). Zodiac relies on
open-source IaC repositories, so the data scarcity issue would

be amplified when supporting a less popular cloud provider.

This is also an interesting avenue of future work.

Unsupported constraints. As a limitation, there are two

classes of constraints that Zodiac currently does not capture.

(i) Region-specific: Each cloud provider may have multiple

regions, each with certain service differences—e.g., some VM

skusmay not be supported in all regions [23]. (2) Subscription-

specific: Each cloud account may come with distinct resource

quota, as users can request more capacity for their subscrip-

tion on demand [7]. Extending Zodiac to capture these se-

mantic checks is an interesting avenue of future work.

Use cases. Apart from finding violations in IaC programs,

Zodiac could also enable other IaC tasks. For instance, some

IaC frameworks are introducing LLM-powered program syn-

thesis workflows [21], but the generated programs often suf-

fer from bugs due to hallucination. Zodiac semantic checks,

in this case, could serve as a RAG (retrieval-augmented gen-

eration) knowledge base [53] to provide additional context

to LLMs. By explicitly asking LLM models to conform with

these checks, users could potentially improve the quality

of their generated programs and accelerate development.

Another use case of Zodiac is to systematically bolster IaC

provider documentation. Zodiac could transform unearthed

semantic checks into natural language format, and offer them

to IaC users as documented deployment insights.

7 Related work
Association rule mining. Program analysis techniques

have been used to discover domain-specific checks/pattern-

s/errors, typically configuration invariants [60, 61, 64, 70]

and guidance on correlated changes on cloud services [57].

They focus on domain-specific inputs dissimilar to cloud IaC,

and do not consider automated validation in their designs.

API fuzzing. Another line of work performs RESTful API
fuzzing [34, 47, 63, 66] to test service API calls, or uses Con-
figuration Error Injection Testing (CEIT) [54, 71] to test appli-

cation configurations. These projects only aim to find defects

in API/application implementations, while Zodiac aims to

not only find problems, but also pinpoint their root causes.

Verification. LLM-based filtering methods have been de-

veloped to validate the query correctness [46, 55, 59, 65],

but they are prone to hallucinate, thus cannot be used di-

rectly for correctness critical validation. Zodiac instead uses

LLMs to fill in missing check details. Formal verification tech-

niques have been applied to other domains such as network

configuration verification [36, 56] and synthesis [38, 58], per-

formance analysis [33], and specific components of cloud

computing [39, 41, 62]. Zodiac instead applies formal reason-

ing to generate and prune semantic check test cases.

Invariant mining. Apart from configuration mining, there

are many works focusing on program invariant mining [32,

40, 42, 43] distributed protocol invariant mining [45, 67, 68],

and trace invariant mining [48, 51]. Their targeted invariants

and mining methods are different from those of Zodiac.

8 Conclusion
Cloud IaC frameworks are gaining popularity. However, to-

day, IaC programs that pass the compiler could still fail dur-

ing the actual cloud deployment. These problems are hard to

identify and fix, and could result in disruption to a deployed

cloud infrastructure. Zodiac is a tool that mines and validate

additional semantic checks as reliability guardrails for IaC.

Our evaluation shows that Zodiac can identify many use-

ful checks whose violation can trigger deployment failures.

This outperforms baseline techniques and existing IaC static

checkers. It has also identified bugs in real-world Terraform

repositories and documentation.
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