
Automated Bug Discovery in Cloud
Infrastructure-as-Code Updates with LLM Agents

Yiming Xiang*, Zhenning Yang*, Jingjia Peng, Hermann Bauer, Patrick Tser Jern Kon, Yiming Qiu, Ang Chen
University of Michigan

{kxiang, znyang, jingjia, hjbauer, patkon, yimingq, chenang}@umich.edu

Abstract—Cloud environments are increasingly managed by
Infrastructure-as-Code (IaC) platforms (e.g., Terraform), which
allow developers to define their desired infrastructure as a
configuration program that describes cloud resources and their
dependencies. This shields developers from low-level operations
for creating and maintaining resources, since they are auto-
matically performed by IaC platforms when compiling and
deploying the configuration. However, while IaC platforms are
rigorously tested for initial deployments, they exhibit myriad
errors for runtime updates, e.g., adding/removing resources and
dependencies. IaC updates are common because cloud infras-
tructures are long-lived but user requirements fluctuate over
time. Unfortunately, our experience shows that updates often
introduce subtle yet impactful bugs. The update logic in IaC
frameworks is hard to test due to the vast and evolving search
space, which includes diverse infrastructure setups and a wide
range of provided resources with new ones frequently added.
We introduce TerraFault, an automated, efficient, LLM-guided
system for discovering update bugs, and report our findings with
an initial prototype. TerraFault incorporates various optimiza-
tions to navigate the large search space efficiently and employs
techniques to accelerate the testing process. Our prototype has
successfully identified bugs even in simple IaC updates, showing
early promise in systematically identifying update bugs in today’s
IaC frameworks to increase their reliability.

Index Terms—Infrastructure-as-Code, Program update, Using
LLMs for Cloud Ops, Reliability, Software testing and debugging.

I. INTRODUCTION

Cloud infrastructure has become a critical part of many en-
terprises. Until recently, cloud tenants (e.g., Home Depot) re-
lied on approaches like API scripting or web portal clicking to
manage and deploy their cloud infrastructure, which are known
to be unreliable, not scalable, and hard to manage. This moti-
vated the development of modern cloud Infrastructure-as-Code
(IaC) tools [1]–[3] which allow cloud tenants to define their in-
tended infrastructure using high-level IaC programs, then real-
ize the user intention automatically by executing sequences of
API calls for resource provisioning (e.g., creating a VM), thus
shielding cloud users away from low-level details. So far, Ter-
raform [4] is leading the market, but tools like OpenTofu [5]
and Pulumi [6] are also gaining popularity. Essentially, these
tools follow a state-centric design philosophy, enabling them
to track the current cloud infrastructure state and update it to
bridge the “delta” between the desired and current states.

While a state-centric design is essential to modern IaC
platforms, infrastructure states are in constant flux and they

*Equal contribution.

1 resource VPC a { // define resource
2 name = "a"; // specify attributes
3 location = "US-west";
4 }
5 resource SUBNET b {
6 name = "b";
7 vpc_name = VPC.a.name;
8 }

Change VPC Region & Delete Subnet

1 resource VPC a {
2 name = "a";
3 location = "US-east"; // field update
4 }
5 /* Removed subnet: structural update */

Fig. 1: A simplified IaC Update

are not easy to handle correctly. As shown in Figure 1, since
the intention of cloud users could change over time (e.g.,
hosting new services, scaling in/out, migration to other clouds,
or patching security issues), IaC platforms have to handle
frequent state transitions during the management lifecycle. A
strawman approach to realize such transitions is simply to de-
stroy and re-deploy the entire infrastructure, which is by nature
a very slow and disruptive process. As a result, IaC platforms
attempt to do in-place updates whenever possible to reduce the
deployment overhead. This introduces complex, case-by-case
behaviors that vary from one IaC resource to another.

To navigate such complexity, modern IaC platforms adopt
a two-layered system architecture. First, a provider-agnostic
core compiler translates state transitions into deployment
plans. Then a set of provider-specific plugins carry out the
plans by executing cloud-level APIs, making decisions on how
to perform in-place updates. These plugins, authored by devel-
opers from different providers, vary in their code quality and
reliability. This is made worse by the fact that IaC frameworks
like Terraform involve a very large provider plugin ecosystem,
where more than 4,000 IaC providers each contribute and
define their resource blocks. As an example, major providers
like AWS could contain more than 200 services, each con-
taining dozens of distinct resource types [2]. Since the overall
IaC program comprises many different resources, any bug in
any constituent resource could risk infrastructure stability.

Indeed, we have found IaC updates [7] to be a frequent
source of reliability problems, leading to subtle yet impactful
bugs that could hang the infrastructure and disrupt normal

operation. Update bugs manifest in two forms [8], [9]. Cer-
tain failures halt updates midway, leaving infrastructure in
unintended states that require a full teardown and rebuild to
fix. Others, known as state drift, complete without errors but
deviate from user intent [10]. Both are challenging and time-
consuming to resolve, placing the burden of fixing on the user
and worsened by lengthy cloud update processes [8].

To the best of our knowledge, no systematic approach exists
for finding IaC update bugs. Today, IaC users encounter these
bugs unexpectedly and then rely on manual troubleshooting to
correct the problem. While creating “unit tests” is a standard
software engineering practice, creating test cases for updates
is much harder because of the combinatorial space of plausible
changes. One could create test cases for each IaC resource
to validate initial deployment, but update tests involve state
transitions, where valid start and end states reveal bugs
during the update process. Manually authoring and validating
these transition test cases at high coverage is difficult and
time-consuming. Software testing [11], [12] can be automated
using fuzzing tools [13], [14], but these focus on static code
behavior. IaC updates, however, require tests that capture
both initial configurations and state transitions, significantly
increasing complexity compared to traditional testing methods.

To this end, we proposed TerraFault, a tool that
automatically generates IaC updates and validates the resulting
state transitions to discover update bugs in Terraform. The
key challenge that TerraFault faces is the vast search space
due to the complex topological structure of IaC programs and
the need to reason about state transitions. Our insight is that
the capabilities of Large Language Models (LLMs) provide
effective assistance in generating and mutating IaC programs,
enabling the creation of diverse and robust update test cases.
An LLM-powered search assistant also guides the system in
navigating the large and complex search space, enhancing
efficiency and coverage in identifying potential issues across
varied state transitions. We report the technical roadmap of
TerraFault and present initial results in identifying impactful
bugs even for simple IaC updates.

II. MOTIVATION

We present case studies of update failures to highlight the
need for IaC-specific testing tools. Finally, we outline our
roadmap for TerraFault, addressing challenges in automated
bug discovery and the role of LLM agents.

A. Even Simple IaC Updates Can Produce Bugs

Our experience with Terraform on the Google Cloud Plat-
form (GCP) shows that even simple updates could fail. We
classify these updates as structural updates, field updates, and
combinations of the two. Notably, all IaC programs in our case
study deploy successfully on their own but fail if we update
one program to another.

Case 1: Structural updates Update bugs can arise from
structural changes to the resource dependency graph, as shown
in Figure 2. In this example, the initial configuration only
contains a VPC, but the update adds a firewall and a virtual

machine (VM) to the cloud infrastructure. While simple,

VPC VPC Firewall VM

Fig. 2: Case 1: Structural update

this update caused a bug in the provider plugin which is
written in Go, where the network attribute was resolved
inconsistently between the plan and apply phases. Specifically,
it was resolved as a shorthand identifier “projects/...” during
the planning phase but expanded to a full URL “https://...”
during the apply phase, causing a mismatch and resulting in
the error. In order to clean up the failed update, this requires
destroying all existing resources and re-deploying them from
scratch. Therefore, IaC update bugs have drastic impacts and
once triggered, are time-consuming to clean up. Examining
the error message manually indicated that this inconsistency
is due to a bug in the provider plugin, which needs to roll out
a proper fix for their update logic.

Case 2: Field updates These updates modify specific
resource attributes, without altering the underlying resource
dependency structure, as shown in Figure 3. The initial state
includes a VPC network and a route policy, with a long
tail dependency chain between them. During our testing,

FAIL

Silent bug: inconsistent local and remote states

Any
states

VPC

…

Route-Policy
 vpc_network {
 name = "name-1"
 … }

 vpc_network {
 name = "name-2"
 … }

VPC

…

Route-Policy

Fig. 3: Case 2: Field update

we observed that simply renaming the VPC can lead to
error. Specifically, such a change introduces an inconsistency
between the local and remote states: Terraform destroys and
recreates all dependent resources except the route policy,
disregarding the fact that the policy is one of the dependents.
But Google Cloud deletes the route policy when the VPC is re-
created, and Terraform is left unaware, resulting in local and
cloud states falling out of sync. This inconsistency prevents
any further state transitions including rollbacks, trapping the
infrastructure in an inconsistent state. Worse still, users are
unable to rectify the issue within Terraform, instead needing
to manually delete resources through the GCP portal. Notably,
while the initial update completes without triggering system
alerts, any subsequent update attempts expose the underlying
inconsistency, causing them to fail.

Case 3: Field & structural updates Last, we explored a
common and complex update type that combines both field
and structural changes, which can similarly lead to errors, as
shown in Figure 4. We begin with an initial setup where a
VM is connected to a VPC. We perform a structural update
by removing the VPC and a field update by detaching the VM

from the VPC and changing its network interface to “default.”
This results in an error indicating that the network cannot be

VPC VM VM

Fig. 4: Case 3: Field & structural updates

deleted because it is still in use by the VM, even though the
default VPC should exist and handle such cases. To resolve
the issue, the users had to destroy all existing resources and
re-deploy the final desired state.

These case studies show that, despite significant advance-
ments in IaC frameworks, they remain more robust for initial
deployments than for state transitions. To the best of our
knowledge, there is no existing tool for testing IaC updates.
Consequently, IaC updates remain challenging and understud-
ied, accentuating the need for tools to specifically expose,
address, and mitigate IaC update bugs. In this work, we build
an automated system to effectively uncover state transition
bugs as an initial step.

B. Roadmap, Technical Challenges, and Ideas

Roadmap. TerraFault aims to generate realistic IaC updates
and validate them by deploying them to the cloud. For a
specific IaC program g, TerraFault generates a family of
updates to g, obtaining a set of programs P (g), referred to
as “snapshots.” We ensure that all programs in P (g) are valid
and deployable, and because they are mutations to the same
initial g, any two programs in this set would give us a plausible
update from one to the other. To test an update, TerraFault
first deploys the first program to the cloud, then modifies the
program to the second, attempting an update. If the update
triggers any bugs, this update is labeled as buggy; we record
this update alongside the cloud error message in our bug
store. In naı̈ve testing, the process involves either exhaustively
iterating through all enumerated updates or randomly sampling
updates until a timeout is reached. Instead, we use an LLM-
guided search to focus on relevant and promising updates,
exposing bugs more effectively. Additionally, we generate a
range of representative programs G, and repeat the above
process for each g ∈ G. This workflow translates to three
technical challenges, each benefiting from the power of LLMs.

Challenge 1 involves generating realistic state transition
sequences. To simulate transitions between IaC states, it is
essential to understand plausible intermediate configurations.
TerraFault models this as a graph mutation problem, where
resource dependency graphs are systematically modified to
produce a wide range of intermediate states. Specifically,
we design mutation operators that modify resource depen-
dency graphs at both the structural and field levels. Structural
mutations alter the graph topology by adding, removing,
or modifying resources and dependencies, while field-level
mutations adjust specific attributes of individual resources,
such as configuration parameters, resource names, or versions.
To further expand the diversity of the generated states, we also

leverage LLMs to suggest updates, utilizing their capability to
propose diverse and generalized mutations. This integration
significantly expands the range of intermediate states, improv-
ing our ability to identify bugs and thoroughly test IaC updates.

Challenge 2 concerns efficiently testing a large number of
state transition candidates. Testing these transitions demands
an approach that minimizes unnecessary testing to reduce de-
ployment overhead and cost. Our prototype optimizes testing
by overlapping initial and final states to reduce deployments
and leveraging parallel workers for faster execution. We also
employ an LLM agent to dynamically guide the search during
testing. By constructing a “bug store,” the agent reorders
test sequences to prioritize specific transitions, enabling more
efficient testing and reducing the time to uncover bugs.

Challenge 3 involves generating comprehensive IaC pro-
grams to serve as the initial input for testing. Our idea is to
bootstrap the process with a set of programs that are hand-
crafted or from online repositories but to use LLMs to enhance
their representativeness. By leveraging LLMs, we aim to create
diverse IaC programs that include resources not readily avail-
able from crawled online repositories, expanding coverage.
LLM-assisted generation allows us to explore a broader range
of configurations and enhances the system’s ability to detect
issues across various cloud resources and scenarios.

In the rest of this paper, we describe our ongoing work in
tackling these challenges and report initial findings.

III. SYSTEM SKETCH

Figure 5 illustrates the automated bug discovery workflow.
In §III-A and §III-B, we describe how TerraFault generates
and tests updates for a specific IaC program (addressing
Challenge 1 and 2 respectively); in §III-C, we describe how
TerraFault generates a wide range of representative IaC pro-
grams, which tackles Challenge 3.

A. Generating Program Mutations as Updates

Our goal is to mutate a given IaC program g (e.g., one that
is obtained from an online repository) to obtain a family of
updates: a pool of realistic programs P (g) that are mutants
of g. This allows us to then construct a transition sequence
by sampling intermediate states from P (g). We define a set
of operators for both structural and field mutations, and use
LLM-based heuristics to drive the search and obtain realistic
updates. We also validate each mutated program to ensure that
it successfully compiles and is deployable.

Structural. Given an initial program g = g0, our structural
mutation generates a sequence of program variants that we
call snapshots: s(g0) = {g0, g1, ..., gk}. We currently use a
basic mutation operator del(v), which removes the vertex v
and its edges from g; in other words, this mutation deletes one
cloud resource and its dependencies from the IaC program.
To ensure validity, we perform a topological sort so that a
removed v does not have other resources that depend on it—
i.e., v has an in-degree of zero. The intuition for this method is
that the sequence s(g) is obtained by gradual deletion from a
representative program g. Therefore, the intermediate states

Candidates

Bug Store… …

Candidate #1

Candidate #2

Candidate #3

… …
IaC Programs

LLM
Writer

GitHub

Manual

LLM
Mutator

Symbolic
Mutator

LLM
Search Assistant

…

Snapshots

Fig. 5: TerraFault workflow. (§III-C) IaC programs are transformed into resource dependency graphs, (§III-A) mutated into
graph variants (snapshots), and sampled to generate state transition candidates. (§III-B) TerraFault tests these candidates, logs
failures in the bug store, and uses an LLM agent to reorder untested candidates, enhancing bug discovery during runtime.

in s(g) are not conjured up from thin air; rather, each gi
represents a plausible program that could have occurred in
a realistic update. s(g) also forms the basis for field updates,
as discussed next.

Field. For each intermediate state in gi ∈ s(g), we also per-
form field updates using an operator mod(v), which modifies
some attribute of the vertex v, such as the ‘location’ of a VM
resource from ‘us-east’ to ‘us-west’. Such modifications do not
impact resource dependency and therefore, do not change the
edges. For each gi, therefore, field updates produce another set
of snapshots: gi0(= gi), gi1, ..., gil where the programs share
the same structure but have mutated fields. When applying
this methodology to the sequence of snapshots in s(g), we
effectively produce a matrix of programs that represent a
family of updates to the program g:

Mut(g = g0) =

g00 g10 · · · gk0
g01 g11 · · · gk1

...
...

...
...

g0t g1t · · · gkt

where g00 = g and {g00, g10, · · · , gk0} = s(g). The horizon-
tal dimension represents structural updates and the vertical
dimension represents field updates. A hybrid (i.e., field &
structural) update can be simulated by picking two snapshots
gim and gjn from different rows and columns, or equivalently,
i ̸= j ∧m ̸= n.

LLM mutator. For a large program, an exhaustive search
on all possible updates would be prohibitive; at the same
time, it may duplicate updates of the same nature leading to
inefficiency. Our goal is to exploit LLMs that could suggest
diverse mutations as well as better candidates to test, with-
out necessarily materializing the entire matrix symbolically
as shown above. We approximate the above workflow by
prompting the LLM for structural and field update suggestions,
obtaining a partial set of programs in the matrix that are
believed to be the most fruitful to test.

B. Efficient Testing of IaC Updates

From the above step, we have obtained a set of updates to
be tested in the cloud, represented as g′ → g′′ where g′ and
g′′ are two elements in the matrix. A naı̈ve solution is to test
each update individually, without considering their relation

0 1

0 2

1 0

1 2

2 0

2 1

Trace candidates
Requiring 12 deployments

0 1 0 2 0 1 2 1

Bug
found!

2Re-deploy

Snapshot pool

Overlapping states
Reduce to minimal of 8 deployments

1

2

0

12 deployments

Fig. 6: Leveraging overlap to reduce deployment overheads.

to each other and without any particular order. However, IaC
testing is costly and time-consuming, since cloud bills are
quite high and resource deployments could take minutes or
hours [8]. We describe our solution for efficient testing based
upon LLM-powered search.

Scheduling. The first technique is to schedule updates so
that each test case builds upon the previous IaC infrastructure,
minimizing the amount of required deployments. For instance,
a naı̈ve testing that considers g′ → g′′ and g′′ → g′ in
isolation would require four deployments. Both g′ and g′′ are
deployed twice, once in each update test case. However, a
better strategy is to schedule these updates together, identifying
a better sequence g′ → g′′ → g′ with only three deploy-
ments. This strategy builds upon the insight that a family of
updates have a high degree of resource sharing, presenting an
opportunity to reuse a deployed IaC infrastructure as much
as possible. Figure 6 depicts a more complex example where
better scheduling can reduce the testing overhead by one-third.
More generally, if we want to test all two-state transitions
in n snapshots exhaustively, the total number of deployments
NumDep(n) would be 2·n!

(n−2)! . Leveraging overlaps would give
n!

(n−2)! + (n − 1) ≤ NumDep(n) ≤ 2·n!
(n−2)! . The lower bound

is achieved when all tests are successful, and each test case
builds upon the previous. However, if any update results in the
identification of a bug, this interrupts the scheduling and we
need to clean up the state and rerun the scheduling algorithm
for the remaining test cases. The worst case scenario is upper
bounded by the naı̈ve solution. Moreover, although we obtain
a family of updates for an initial program p, not all snapshots
have resource overlaps. Another optimization is to leverage
multiple workers in parallel, with each worker assigned to
test a specific subset of the updates. Each worker operates in

0 20 40 60 80 100 120 144
Number of deployment

1

2

3

4

5
Nu

m
be

r o
f B

ug
s F

ou
nd

GPT-4o mini
GPT-4o
GPT4 Turbo
baseline
baseline
w/o overlap

Fig. 7: Bug discovery w/ and w/o the LLM agent.

its own “namespace,” so that deployments and failures in one
worker’s domain are isolated from others.

LLM search assistant. At runtime, when a bug is detected,
TerraFault records the failed update, cleans up the environ-
ment, and continues testing. Our goal is to uncover as many
buggy updates as possible, while ideally avoiding tests that
are likely to succeed. We leverage an LLM agent that digests
known buggy updates from the bug store and reorders the
test case sequences to prioritize the updates that are likely to
trigger bugs. The agent analyzes affected resources and error
messages to guide testing. It prioritizes high-risk transitions,
scoring tests by bug likelihood while maximizing overlaps to
optimize discovery within a limited time budget.

C. Generating Initial IaC Programs

Having described how TerraFault systematically generates
update test cases for a given IaC program, we now discuss how
it curates the initial input IaC programs, which form the basis
for the mutation process. The quality of these initial programs
is crucial, as they influence the breadth and effectiveness
of subsequent testing. To automate their generation, we
aim to develop a pipeline capable of producing targeted
programs that meet two key criteria: representativeness and
high resource coverage.

To ensure representativeness, we plan to develop a web
crawler to scrape Terraform GitHub repositories, creating
a corpus that captures real-world usage of various cloud
resources. This will help identify typical use cases for the
most popular resources. Additionally, since online IaC config-
urations can be extremely large, we aim to prune redundant
subgraphs, retaining unique structures. This approach not
only preserves diversity for mutation testing but also reduces
computational costs by eliminating unnecessary duplications.

LLM writer. For high resource coverage, particularly
for newer or less common resources with limited online
examples, we propose leveraging LLMs for their advanced
code generation capabilities. By conditioning LLMs on
documentation [15], we aim to generate minimal yet valid
IaC programs that incorporate these resources, thereby
improving overall coverage.

IV. INITIAL RESULTS

We have built a preliminary prototype for GCP (Google
Cloud Platform), which has successfully discovered bugs
even in simple IaC updates. We report the initial results using

TABLE I: Summary of bug finding results.

TF Program #Resources #Snapshots #Updates #Bugs
Firewall 3 10 63 13

Router Policy 4 12 143 5
Disk 3 11 121 5

the three IaC programs described in §II-A: Case 1 (Firewall),
Case 2 (Router Policy), and Case 3 (Disk). Our evaluation
focuses on the efficiency of bug discovery, and we refer
readers back to §II-A for the discovered bugs. Table I presents
the statistics for the three tested IaC programs, detailing
the resources, mutated programs (snapshots) generated by
TerraFault, tested updates, and identified bugs for each
program. For each program, TerraFault has identified specific
updates that trigger the bugs in §II-A.

Figure 7 demonstrates the effectiveness of TerraFault in
scheduling IaC testing. We conducted two baseline experi-
ments using exhaustive search: one with overlapping enabled
and the other without. By enabling overlapping between initial
and final states, it reduces NumDep(n) across the board,
achieving a 47% reduction in deployments and resulting in
significant cost savings in both cloud expenses and testing
time, especially for larger IaC configurations. Additionally,
we evaluated the impact of the LLM search assistant. Upon
detecting the first bug, the bug store is updated, and the LLM
agent analyzes state deltas and reorders untested transitions.
When both the LLM search assistant and overlapping are
enabled, the number of deployments was reduced even further,
achieving a 68% reduction. We also assessed the performance
of various LLMs, including GPT-4o, GPT-4 Turbo, and GPT-
4o Mini, observing similar testing efficiency across models.
Smaller models achieve similar reductions in deployments
and bug discovery rates as larger ones, offering significant
savings in LLM API costs. Based on manual inspection, we
observed that bugs with similar root causes can vary in blast
radius; for example, some, like in Case 1, have a broader
impact, while others, like in Cases 2 and 3, are more localized.
Experimenting with a wider range of programs and providers,
along with bug categorization and root cause analysis, is
deferred to future work.

Figure 8a highlights the benefits of parallelization using
multiple workers in testing IaC updates. We ran the experiment
on a transition sequence of length 35, and we used execution
time and bug discovery rate as key metrics. Using more than
eight workers, we observed a 5x performance improvement
compared to a single worker, with the average time to de-
ploy one snapshot reduced to approximately 12.6 seconds.
However, the difference between eight and ten workers was
minimal, as the maximum sequence length among all workers
became nearly identical, creating a bottleneck. Figure 8b
illustrates the execution time to discover bugs with varying
numbers of workers. With eight parallel workers, the time
to detect bugs was reduced significantly, approximately four
times faster than using a single worker. This demonstrates the
efficiency of parallel execution in accelerating bug discovery.

2 4 6 8 10
Number of Workers

0

10

20

30

To
ta

l E
xe

cu
tio

n
Ti

m
e

(m
in

)

(a)

0 5 10 15
Execution Time (min)

0

1

2

Nu
m

er
 o

f B
ug

s F
ou

nd

8 Workers
3 Workers
1 Worker

(b)

Fig. 8: Parallelis testing speeds up bug discovery.

V. RELATED WORK

Program/configuration testing. Software testing is a well-
studied area, but most of these tools do not focus on update
testing. Instead, existing work [11], [12] focuses on code
correctness, overlooking state transitions that likewise could
be a source of bugs. Similar tools [16], [17] exist for config-
uration testing but focus on validating specific setups rather
than updates. Fuzzing [13], [18] is a common bug detection
technique but is not typically specialized for updates.
Update testing. Acto [19] considers state transitions for
Kubernetes operators, which operate within a more confined
and predictable search space than IaC programs. TCP-Fuzz
[20] focuses on TCP state transition testing, which is also
substantially different from IaC updates. Cloud IaC envi-
ronments require custom techniques due to the complexity
of the programs, and the high costs and time demands of
comprehensive testing—these are the goals of TerraFault.
IaC testing. Existing tools can scan IaC programs to
detect bad coding practices and also detect configuration
drift [8], [9], [19]. However, they cannot detect, analyze,
and address update bugs, which could manifest in different
ways depending on the IaC provider. Zodiac [8] discovers
deployment bugs of IaC programs but does not address
updates. Recognizing the critical importance of infrastructure
updates, TerraFault is the first work to generate and validate
IaC updates in an automated manner.

VI. CONCLUSION

We have described TerraFault, an automated tool for
discovering and analyzing bugs in Infrastructure-as-Code
(IaC) updates. These update bugs pose risks to cloud
reliability, and they are hard to discover due to complexity
and user-specific update scenarios. TerraFault leverages
LLM agents for program mutation, test scheduling, and
high-coverage IaC program generation. Our initial experience
shows promising results and a full development of TerraFault
will help IaC developers and cloud providers mitigate update
pitfalls, enhancing cloud reliability.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their helpful reviews.
This work was partially supported by NSF grants CNS-
1942219, CNS-2106751, CNS-2106388, CNS-2214272, and
a VMware Early Career Faculty Grant.

REFERENCES

[1] K. Morris., Infrastructure as Code: Managing Servers in the Cloud.
O’Reilly Media, Incorporated, 2016.

[2] P. T. J. Kon, J. Liu, Y. Qiu, W. Fan, T. He, L. Lin, H. Zhang, O. M.
Park, G. S. Elengikal, Y. Kang, et al., “Iac-eval: A code generation
benchmark for cloud infrastructure-as-code programs,” Advances in
Neural Information Processing Systems, vol. 36, 2024.

[3] Y. Qiu, P. T. J. Kon, J. Xing, Y. Huang, H. Liu, X. Wang, P. Huang,
M. Chowdhury, and A. Chen, “Simplifying cloud management with
cloudless computing,” in Proceedings of the 22nd ACM Workshop on
Hot Topics in Networks, pp. 95–101, 2023.

[4] “Terraform by Hashicorp,” https://www.terraform.io/.
[5] “Opentofu,” https://opentofu.org/.
[6] “Pulumi,” https://www.pulumi.com/.
[7] J. Lepiller, R. Piskac, M. Schäf, and M. Santolucito, Analyzing In-

frastructure as Code to Prevent Intra-update Sniping Vulnerabilities,
pp. 105–123. 03 2021.

[8] Y. Qiu, P. T. J. Kon, R. Beckett, and A. Chen, “Unearthing semantic
checks for cloud infrastructure-as-code programs,” in Proceedings of the
29th Symposium on Operating Systems Principles, 2024.

[9] “Terrascan,” https://runterrascan.io/.
[10] Snyk, “How to detect and prevent configuration drift,” 2024.
[11] O. Crameri, N. Knezevic, D. Kostic, R. Bianchini, and W. Zwaenepoel,

“Staged deployment in mirage, an integrated software upgrade testing
and distribution system,” in Proceedings of Twenty-First ACM SIGOPS
Symposium on Operating Systems Principles, SOSP ’07, (New York,
NY, USA), p. 221–236, Association for Computing Machinery, 2007.

[12] Z. Li, Q. Cheng, K. Hsieh, Y. Dang, P. Huang, P. Singh, X. Yang,
Q. Lin, Y. Wu, S. Levy, and M. Chintalapati, “Gandalf: An intelligent,
End-To-End analytics service for safe deployment in Large-Scale cloud
infrastructure,” in 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20), (Santa Clara, CA), pp. 389–402,
USENIX Association, Feb. 2020.

[13] K. Even-Mendoza, A. Sharma, A. F. Donaldson, and C. Cadar, “Grayc:
Greybox fuzzing of compilers and analysers for c,” in Proceedings of
the 32nd ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2023, (New York, NY, USA), p. 1219–1231,
Association for Computing Machinery, 2023.

[14] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code fragments,”
in 21st USENIX Security Symposium (USENIX Security 12), (Bellevue,
WA), pp. 445–458, USENIX Association, Aug. 2012.

[15] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W. tau Yih, T. Rocktäschel, S. Riedel, and
D. Kiela, “Retrieval-augmented generation for knowledge-intensive nlp
tasks,” 2021.

[16] S. Ma, F. Zhou, M. D. Bond, and Y. Wang, “Finding heterogeneous-
unsafe configuration parameters in cloud systems,” in Proceedings of
the Sixteenth European Conference on Computer Systems, EuroSys
’21, (New York, NY, USA), p. 410–425, Association for Computing
Machinery, 2021.

[17] X. Sun, R. Cheng, J. Chen, E. Ang, O. Legunsen, and T. Xu, “Testing
configuration changes in context to prevent production failures,” in 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), pp. 735–751, USENIX Association, Nov. 2020.

[18] V. J. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and
M. Woo, “The art, science, and engineering of fuzzing: A survey,” IEEE
Transactions on Software Engineering, vol. 47, no. 11, pp. 2312–2331,
2021.

[19] J. T. Gu, X. Sun, W. Zhang, Y. Jiang, C. Wang, M. Vaziri, O. Legunsen,
and T. Xu, “Acto: Automatic end-to-end testing for operation correctness
of cloud system management,” in Proceedings of the 29th Symposium
on Operating Systems Principles, SOSP ’23, (New York, NY, USA),
p. 96–112, Association for Computing Machinery, 2023.

[20] Y.-H. Zou, J.-J. Bai, J. Zhou, J. Tan, C. Qin, and S.-M. Hu, “TCP-
Fuzz: Detecting memory and semantic bugs in TCP stacks with fuzzing,”
in 2021 USENIX Annual Technical Conference (USENIX ATC 21),
pp. 489–502, USENIX Association, July 2021.

https://www.terraform.io/
https://opentofu.org/
https://www.pulumi.com/
https://runterrascan.io/.

	Introduction
	Motivation
	Even Simple IaC Updates Can Produce Bugs
	Roadmap, Technical Challenges, and Ideas

	System Sketch
	Generating Program Mutations as Updates
	Efficient Testing of IaC Updates
	Generating Initial IaC Programs

	Initial Results
	Related Work
	Conclusion
	References

